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Abstract. Previous studies have established links between
biodiversity and soil geochemistry in the McMurdo Dry Val-
leys, Antarctica, where environmental gradients are impor-
tant determinants of soil biodiversity. However, these gra-
dients are not well established in the central Transantarctic
Mountains, which are thought to represent some of the least
hospitable Antarctic soils. We analyzed 220 samples from
11 ice-free areas along the Shackleton Glacier (∼ 85◦ S), a
major outlet glacier of the East Antarctic Ice Sheet. We es-
tablished three zones of distinct geochemical gradients near
the head of the glacier (upper), its central part (middle), and
at the mouth (lower). The upper zone had the highest water-
soluble salt concentrations with total salt concentrations ex-
ceeding 80 000 µg g−1, while the lower zone had the low-
est water-soluble N : P ratios, suggesting that, in addition to
other parameters (such as proximity to water and/or ice), the
lower zone likely represents the most favorable ecological
habitats. Given the strong dependence of geochemistry on
geographic parameters, we developed multiple linear regres-
sion and random forest models to predict soil geochemical

trends given latitude, longitude, elevation, distance from the
coast, distance from the glacier, and soil moisture (variables
which can be inferred from remote measurements). Confi-
dence in our random forest model predictions was moder-
ately high with R2 values for total water-soluble salts, water-
soluble N : P, ClO−4 , and ClO−3 of 0.81, 0.88, 0.78, and 0.74,
respectively. These modeling results can be used to predict
geochemical gradients and estimate salt concentrations for
other Transantarctic Mountain soils, information that can ul-
timately be used to better predict distributions of soil biota in
this remote region.

1 Introduction

The least biologically diverse terrestrial systems are those
found in extreme physical and chemical environments. The
abundance and diversity of life in soils are dependent on a
number of environmental variables, including temperature,
precipitation, organic matter content, and nutrient availability

Published by Copernicus Publications on behalf of the European Geosciences Union.



1630 M. A. Diaz et al.: Geochemical zones and environmental gradients

(Wall et al., 2012). Hot deserts are typically viewed as one of
the least biologically diverse environments, but cold deserts
can often be even less diverse (Freckman and Virginia, 1998).
Soils in Antarctica typically serve as end-members for low
habitat suitability due to their high salt concentrations, low
organic carbon, low soil moisture, and low mean annual tem-
peratures (Courtright et al., 2001).

In the McMurdo Dry Valleys (MDV), organic matter and
salt concentrations influence soil communities, where soils
with higher amounts of organic carbon, lower water-soluble
N : P ratios, and lower total water-soluble salt concentrations
generally harbor the greatest biomass and biodiversity (Bar-
rett et al., 2006; Bottos et al., 2020; Caruso et al., 2019;
Magalhães et al., 2012). These Antarctic ecosystems are rel-
atively simple and are among the few known soil systems
where nematodes and microarthropods (Collembola, Acari)
are at the top of the food chain (Freckman and Virginia,
1998; Hogg and Wall, 2012). Studies of soils in the MDV
and Transantarctic Mountains (TAM) have been key to un-
derstanding ecosystem structure and function in extreme ter-
restrial environments (e.g., Caruso et al., 2019; Collins et al.,
2019, 2020; Convey and McInnes, 2005; Freckman and Vir-
ginia, 1998; Hodgson et al., 2010).

Biological processes in Antarctic soils are largely depen-
dent on the availability, duration, and proximity of soils to
liquid water (Barrett et al., 2006). Due to the seasonality of
thawing events, liquid water acts as a pulse to the ecosys-
tem, providing water for organisms but also wetting sur-
face soils and dissolving soluble salts (Webster-Brown et al.,
2010; Zeglin et al., 2009). Experiments of salt thresholds on
Antarctic nematodes found that no individuals survived in
highly saline soils over ∼ 2600 mg L−1 total dissolved solids
(TDS) (Nkem et al., 2006). Concentrations of soluble salts
exist at these concentrations or higher at high elevation and
inland locations in the TAM (Bockheim, 2008; Lyons et al.,
2016). Additionally, studies on TAM soils have found that
increased salt concentrations lead to a decrease in soil bio-
diversity in older soils compared to younger soils (Magal-
hães et al., 2012). Yet, despite these inhospitable conditions
(e.g., high salt concentrations and glacial advance and re-
treat), some organisms are postulated to have found suitable
refugia in TAM soils and persisted in isolation for millions
of years and through glacial cycles (Beet et al., 2016; Collins
et al., 2019, 2020; Stevens et al., 2006; Stevens and Hogg,
2003).

It is generally accepted that habitat suitability for inver-
tebrate species in Antarctic soils is driven by a combina-
tion of geochemical, geographic, hydrologic, and geomor-
phic variables (Bottos et al., 2020; Courtright et al., 2001;
Freckman and Virginia, 1998; Magalhães et al., 2012). Ge-
ographic variables, such as elevation, can be measured with
advanced mapping tools and satellite imagery; however, sur-
face exposure ages, soil geochemistry and nutrient content
require extensive logistical support and resource allocation
for sample collection and analysis. A better understanding

of the relationship between geographic variables and on-the-
ground measurements is needed to aid in our ability to under-
stand and predict habitat suitability for invertebrates through-
out the TAM.

With this study, we determined and evaluated geochemical
patterns and gradients of water-soluble ions in soils collected
from 11 ice-free areas along the Shackleton Glacier, central
Transantarctic Mountains (CTAM). Particular attention was
given to total water-soluble salt concentrations, N : P ratios,
and ClO−4 and ClO−3 concentrations based on their influence
on biodiversity as determined in previous studies (e.g., Ball et
al., 2018; Barrett et al., 2006; Courtright et al., 2001; Drag-
one et al., 2020; Nkem et al., 2006). The geochemical data
were compared to geographic parameters to understand how
the physical environment influences the observed geochem-
ical variability. Our results show that water-soluble ion con-
centrations and distributions are driven largely by soil ge-
ography and surface exposure age. Finally, we implemented
statistical and machine learning techniques to interpolate and
predict the soil geochemistry across the region using geo-
graphic variables. Our multiple linear regression and ran-
dom forest models show that latitude, longitude, elevation,
distance from the coast, distance from the glacier, and soil
moisture (all variables currently or soon to be remotely mea-
surable using maps and satellites) are moderately effective at
estimating spatial patterns in TAM soil geochemistry with R2

values as high as 0.87. These data will be particularly useful
for ecologists seeking to understand refugia and habitat suit-
ability in Antarctica and similarly harsh desert environments.

2 Study sites

The Shackleton Glacier (∼ 84.5 to 86.4◦ S; ∼ 130 km long
and ∼ 10 km wide) is a south–north trending outlet glacier
of the East Antarctic Ice Sheet (EAIS) located to the west
of the Beardmore Glacier, and it flows through the Queen
Maud Mountains (CTAM) into the Ross Sea (Fig. 1). The el-
evations of exposed soils range from∼ 150 to >3500 m a.s.l.
(above sea level) from the coast towards the Polar Plateau.
Long-term climate data are not yet available, but the Shack-
leton Glacier region is a polar desert regime, similar to the
Beardmore Glacier region, with average annual temperatures
well below freezing and little precipitation (LaPrade, 1984).

During the Last Glacial Maximum (LGM) and glacial pe-
riods throughout the Pleistocene, the size and thickness of
the EAIS was likely greater than current levels (Golledge et
al., 2013; Nakada and Lambeck, 1988; Talarico et al., 2012;
Wilson et al., 2018). Outlet glaciers, such as the Shackleton
Glacier, may have had the greatest increases in extent, espe-
cially at the glacier terminus (Golledge et al., 2012; Golledge
and Levy, 2011). The behavior of local alpine and tributary
glaciers is not well-constrained, but these glaciers are also
believed to have advanced and retreated over the last 2 mil-
lion years (Diaz et al., 2020a; Jackson et al., 2018). As a re-
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Figure 1. Samples were collected and analyzed from the exposed soils along the Shackleton Glacier, a major outlet glacier of the EAIS (a),
in three zones. The upper zone (b) was located at the head of Shackleton Glacier, the middle zone (c) was the central portion, and the lower
zone (d) was at the terminus of the glacier where it drains into the Ross Sea. Satellite images were provided courtesy of the Polar Geospatial
Center (PGC). The Ross Ice Shelf (RIS) is indicated in panel (a).

sult, currently exposed soils were overlain and reworked by
fluctuations of the Shackleton Glacier and other tributary and
alpine glaciers in the region. Exposure ages range from the
early Holocene to the Miocene, and they generally increase
with distance from the coast and distance from the glacier
(Balter-Kennedy et al., 2020; Diaz et al., 2020a).

The soils contain a range of water-soluble salts derived pri-
marily from atmospheric deposition and chemical weather-
ing (Claridge and Campbell, 1968; Diaz et al., 2020b). The
major salts are typically nitrate and sulfate salts, especially
at higher elevations and further inland from the coast of the
Ross Sea (Diaz et al., 2020b). The solubilities of the salts
vary, but nitrate salts are highly soluble, and their occurrence
at high elevation and inland locations suggests that those
soils have maintained persistent arid conditions.

3 Methods

3.1 Sample collection and preparation

During the 2017–2018 austral summer, 220 surface soil sam-
ples (∼ top 5 cm) were collected from 11 distinct ice-free ar-

eas (Roberts Massif, Schroeder Hill, Mt. Augustana, Bennett
Platform, Mt. Heekin, Thanksgiving Valley, Taylor Nunatak,
Mt. Franke, Mt. Wasko, Nilsen Peak, and Mt. Speed) along
the Shackleton Glacier, including a subset of 27 samples pre-
viously analyzed for S, N, and O isotopes in nitrate and sul-
fate (Diaz et al., 2020b). At each area, we collected sam-
ples in transects (ranging from ∼ 200 to ∼ 2000 m in length)
to maximize the geochemical variability. Our transects were
also designed to capture the LGM transition, with some
soils exposed throughout the LGM and others exposed fol-
lowing glacier retreat. GPS coordinates and elevations were
recorded with each sample and later used to estimate the dis-
tance from the coast and distance from the glacier (defined as
linear distance from the nearest glacier – Shackleton, tribu-
tary, or alpine). Once collected, the samples were stored and
shipped frozen (−20◦) to the Ohio State University.

Prior to geochemical analysis, the samples were dried at
50◦C for at least 72 h, with the loss in mass attributed to soil
moisture content. The dried soils were leached at a 1 : 5 soil
to deionized water (DI) ratio, and the leachate was filtered
through 0.4 µm Nucleopore membrane filters (Diaz et al.,
2018, 2020b; Nkem et al., 2006). Due to the low sediment to
water ratio, this leaching technique only dissolves the more
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water-soluble salts (Toner et al., 2013). These include salts
with ClO−4 , NO−3 , Cl−, SO2−

4 , ClO−3 , and CO2−
3 +HCO−3 .

Process blanks were generated and analyzed to account for
any contamination from the leaching process.

3.2 Analytical analysis of water-soluble anions, cations,
and nutrients

The analytical techniques used here are similar to those re-
ported by Diaz et al. (2020b). In brief, the analytes in-
cluded anions (F−, Cl−, Br−, and SO2−

4 ) which were mea-
sured on a Dionex ICS-2100 ion chromatograph, cations
(K+, Na+, Ca2+, Mg2+, and Sr2+) which were measured
on a PerkinElmer Optima 8300 inductively coupled plasma
optical emission spectrometer (ICP-OES), and nutrients
(NO−3 +NO−2 , PO3−

4 , H4SiO4, and NH3) which were mea-
sured on a Skalar San++ automated wet chemistry analyzer
at the Ohio State University. Perchlorate (ClO−4 ) and chlo-
rate (ClO−3 ) were measured using an ion chromatograph–
tandem mass spectrometry technique (IC-MS/MS) at Texas
Tech University (Jackson et al., 2012, 2015). All analytes are
reported as listed. Total water-soluble salt concentration was
calculated as the sum of all measured cations and anions.
The precision of replicated check standards and samples was
typically better than 10 % for all major anions, cations, and
nutrients and better than 20 % for perchlorate and chlorate.
Accuracy was typically better than 5 % for all major anions,
cations, and nutrients, as determined by the NIST 1643e ex-
ternal reference standard and the 2015 United States Geolog-
ical Survey (USGS) interlaboratory calibration standard (M-
216), and better than 10 % for perchlorate and chlorate, as
determined by spike recoveries. Precision and accuracy for
individual analytes are located in Table S1. Detection lim-
its for the analytes have been previous reported (Diaz et al.,
2018; Jackson et al., 2012).

3.3 Data interpolation and machine learning

Inverse distance weighted (IDW) interpolations were per-
formed for Bennett Platform, Thanksgiving Valley, and
Roberts Massif using the Geostatistical Analyst tool in Ar-
cMap 10.3. Since IDW is a deterministic method where un-
known values are predicted based on proximity to known val-
ues, we chose those three sites as they had the most defined
transects and relatively higher sample density. The interpola-
tion parameters were constant with a power of 4, maximum
neighbors of 15, minimum neighbors of 5, 4 sectors, and a
variable search radius. These parameters were chosen such
that they optimize for the lowest mean absolute error (MAE).

Multiple linear regressions were generated for all geo-
chemical analytes except H4SiO4 (total of 15 dependent vari-
ables) with latitude, longitude, elevation, distance from the
coast, distance from the glacier, and soil moisture as inde-
pendent variables using built-in functions in R 3.6.3 (R Core
Team, 2020). Random forest regression models were sim-

ilarly generated using the RandomForest library. The ran-
dom forest model is a machine learning algorithm that uti-
lizes supervised learning algorithms to predict values given
input predictor variables (Breiman, 2001). Multiple decision
trees are run in parallel with a randomized subset of predictor
variables, and the aggregate result of each tree is used to gen-
erate a predicted outcome. Since each tree is generated using
a random sample and random predictor variables, the ran-
dom forest model is effective at minimizing overfitting and
handling outliers (Breiman, 2001). For both models, all geo-
chemical data were log-transformed to ensure the data were
normally distributed (verified using a Jarque–Bera normality
test). Missing values were input as NA (not available).

Machine learning algorithms are widely used in a variety
of disciplines from finance (Patel et al., 2015) to ecology
(Davidson et al., 2009; Peters et al., 2007; Prasad et al., 2006)
for both data prediction (regression) and classification. Re-
cently, these techniques have been used for earth science ap-
plications, including geologic mapping (Heung et al., 2014;
Kirkwood et al., 2016), air quality monitoring (Stafoggia et
al., 2019), and water contaminant tracing (Tesoriero et al.,
2017). We developed a novel application of machine learn-
ing to predict concentrations and gradients of water-soluble
salts in Antarctic soils given set geographic parameters, sim-
ilar to the approaches developed for stock market and real
estate predictions (Antipov and Pokryshevskaya, 2012; Patel
et al., 2015).

For our random forest models, any sparse missing values
in Table S2 were estimated by averaging the geochemistry
of the samples collected immediately before and after in the
same transect. The new imputed dataset was split into a train-
ing set representing 86 % of the data (n= 189; Table S3)
and a testing set representing the remaining 14 % (n= 31;
Table S4) based on ideal model parameters described by
Breiman (2001). The training dataset was used to generate
the random forest models for each analyte. Each of the mod-
els was run with 2000 decision trees (ntree= 2000) to min-
imize the mean squared error. The number of random vari-
ables used for each node split in the decision trees was set
to the recommended regression default of one third of the
total number of variables to optimize the model randomness,
which in our case was 2 (mtry= 2), following parameters de-
scribed previously (Breiman, 2001). The scripts developed
for both the multiple linear regression and random forest
models are included in the Supplement.

4 Results

4.1 Geochemistry of upper, middle, and lower zones

The maximum, minimum, mean, standard deviation, and co-
efficient of variation are reported in Table 1 for the measured
geographic and geochemical data. Concentrations of water-
soluble ions span up to 5 orders of magnitude and are variable
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across the region. Elevation, distance from the coast, distance
from the glacier, and soil moisture are also variable and span
up to 3 orders of magnitude. The highest elevation samples
(>2000 m a.s.l.) were collected from Schroeder Hill, and the
greatest soil moisture content is from Mt. Wasko at 12.3 %
with a mean of 2.1 % for all samples.

Shackleton Glacier region surface soils can be separated
into three zones based on their water-soluble geochemistry:
an upper zone near the Polar Plateau, a middle zone near the
center of the glacier, and a lower zone where the glacier flows
into the Ross Sea (Figs. 1, 2). The upper zone samples are
characterized by the highest total water-soluble salt concen-
trations, with the highest values greater than 80 000 µg g−1

at Schroeder Hill, while the lower zone samples have the
lowest total salt concentrations, with the lowest values near
10 µg g−1 at Mt. Wasko (Fig. 2a–c). The middle zone has
intermediate values. Water-soluble N : P molar ratios gener-
ally follow a similar trend (Fig. 2d–f). The lowest N : P ra-
tios are in the lower zone soils, while the middle and upper
zones have more variable values. Concentrations of ClO−4
and ClO−3 follow similar trends as the total salts with less
distinction between the middle and upper zones, though most
concentrations in the lower zone are below the detection limit
(Fig. 2g–l; Table S2).

Observed trends between the zones appear to be driven,
at least partially, by geography. Regressions of total water-
soluble salt concentration, water-soluble N : P ratio, and
ClO−3 concentration with elevation, distance from the coast,
and distance from the glacier are all positive (Fig. 2). The
strongest relationships are between total salts and elevation,
and N : P ratio and elevation with R2 values of 0.59 and 0.52,
respectively, and p values <0.001 with a Bonferroni correc-
tion which was applied to minimize the Familywise Type 1
error rate associated with multiple comparisons (Fig. 2a, d).
The weakest relationships are between ClO−4 and distance
from the coast and ClO−3 and distance from the glacier with
R2 values of 0.11 and 0.06, respectively (Fig. 2h, i). Distance
from the glacier varies widely between individual zones with
frequent overlaps, but there appears to be a moderate rela-
tionship with N : P ratio and total salts (Fig. 2c, f). Overall,
total salt concentration has the strongest relationship with ge-
ography and ClO−4 has the weakest relationships.

Ternary diagrams highlight the specific geochemical gra-
dients within and between the zones (Fig. 3). The anion
ternary diagram only includes SO2−

4 , NO−3 , and Cl−, which
are the major water-soluble salts in the region (Claridge and
Campbell, 1968; Diaz et al., 2020b). Though carbonate and
bicarbonate salts have been identified in both lacustrine sed-
iments and soils in Antarctica, previously measured concen-
trations in the Shackleton Glacier region were low, ranging
from 0.07 % to 2.5 %, and bicarbonate salts were not identi-
fied in the highest elevation and furthest inland soils (Clar-
idge and Campbell, 1968; Diaz et al., 2020b; Lyons et al.,
2016). The most abundant anion for the upper zone is SO2−

4 ,
which is greater than 99 % of the total anion budget in some

Schroeder Hill and Roberts Massif samples, though other lo-
cations are dominated by NO−3 (Fig. 3). The anions are more
evenly distributed in the middle zone, though the majority
of samples are most abundant in NO−3 and Cl−. The lower
zone has much lower SO2−

4 fractions than the upper zone,
and the dominant anion is generally Cl−. The cation distri-
bution is very similar for all three zones (Fig. 3). Na++K+

is the most abundant cation pair representing over 90 % of
the total cations for many upper and middle zone samples,
while Ca2+ is the second most abundant. In general, Mg2+ is
the least abundant cation across all sampling locations.

4.2 Statistical geochemical variability

A principal component analysis (PCA) using the correla-
tion matrix (i.e., scale=TRUE) was performed in R (us-
ing factoextra; Kassambara and Mundt, 2017) and built in
R software libraries to determine which geochemical vari-
ables most strongly differ across the samples. For the PCA,
the first two principal components (PC1 and PC2) account
for over 50 % of the total dataset variability at 44.2 % and
11.6 %, respectively. The different zones are correlated with
different principal components (Fig. 4). The samples from
the middle zone are positively correlated with PC1 and PC2.
In the biplot, they plot in the upper-right quadrant with high
concentrations of Cl−, NO−3 , water-soluble N : P ratio, and
Ca2+ and with a minor influence from soil moisture and
H4SiO4. The upper zone samples generally plot along PC1
and are most associated with Sr2+, SO2−

4 , Mg2+, Na+, K+,
F−, ClO−4 , and ClO−3 . The samples from the lower, more
coastal zone are negatively correlated with PC1 and are dis-
tinguished by their higher PO3−

4 concentrations. Most sam-
ples from all locations plot within the 95 % confidence in-
terval ellipses. However, there are two strong outliers from
Schroeder Hill and Mt. Heekin.

Similar to the PCA, we performed a simple Spearman’s
rank correlation for the entire dataset to visualize the sta-
tistical dependence between all variables. Since a goal of
this study is to relate water-soluble ion concentrations to ge-
ography, we focused on latitude, longitude, distance from
the coast, distance from the glacier, and soil moisture. The
strongest correlation coefficients are between Cl− and lati-
tude, elevation, and distance from the coast and Sr2+ and soil
moisture (Fig. 5). Most other correlations are moderate to
weak, though there appear to be notably stronger correlations
between ClO−3 and latitude and distance from the coast, Ca2+

and longitude, elevation, and distance from the coast, NO−3
and latitude, and SO2−

4 and distance from the glacier. Longi-
tude, elevation, and distance from the coast have the greatest
number of strong and moderate correlations with the geo-
chemistry data. Outside of the geographic parameters, Na+

is highly correlated with total water-soluble salts, likely rep-
resentative of the high Na++K+ percentages (Fig. 3), and
Sr2+ is highly correlated with K+, likely reflecting a com-
mon ion source.
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Table 1. Overview of geography, soil moisture, and water-soluble ions from the Shackleton Glacier region. The minimum values reported
are those within the detection limits. Individual sample concentrations are detailed in Table S2.

Max Min Mean SD CV

Elevation (m) 2220 150 1130 551 48
Distance from coast (km) 120 1 55 38 68
Distance from glacier (m) 1940 1 519 472 90
Soil moisture (%) 12.3 0.1 2.1 2.1 102
F− (µg g−1) 120 0.39 8.87 11.78 133
Cl− (µg g−1) 13 600 1.59 615 1780 289
NO−3 (µg g−1) 38 400 0.10 1470 3450 235
SO2−

4 (µg g−1) 55 300 0.08 4390 8080 184
PO3−

4 (µg kg−1) 4200 76.09 381 560 147
ClO−4 (µg kg−1) 75 000 0.35 985 6020 611
ClO−3 (µg kg−1) 14 500 1.00 1170 2500 214
Ca2+ (µg g−1) 4400 0.55 839 1160 139
Mg2+ (µg g−1) 6280 0.12 293 705 240
Na+ (µg g−1) 25 300 0.39 1140 2880 252
K+ (µg g−1) 440 0.86 28.31 51.61 182
Sr2+ (µg g−1) 46.61 0.01 8.63 10.31 119
H4SiO4 (µg g−1) 60.78 1.14 21.78 11.03 50.67
NH3 (µg kg−1) 5080 18.85 324 587 181
N : P ratio (molar) 526 000 0.29 23 600 62 700 266
Total salt (µg g−1) 80 500 9.46 7932 13 300 167

SD: standard deviation, CV: coefficient of variation.

4.3 Spatial interpolation and machine learning model
performance

The total salt concentrations of individual samples at Ben-
nett Platform produce the most defined interpolation gradient
from the glacier front to further inland compared to Roberts
Massif and Thanksgiving Valley (Fig. 6). Bennett Platform
also has the smoothest salt concentration contours suggest-
ing that the interpolation model is the strongest and most ro-
bust at this location. The second strongest interpolation is
Thanksgiving Valley. Contrary to the measurements at Ben-
nett Platform, Thanksgiving Valley has the highest salt con-
centrations in the center of the valley with lower concentra-
tions to both the east and west. The lowest concentration con-
tours are closest to the glacier for both Bennett Platform and
Thanksgiving Valley, which is likely related to glacial history
since the soils near the glacier are relatively younger than
those further inland based on meteoric 10Be data (Diaz et al.,
2020a). The interpolation from Roberts Massif does not have
a distinguishable spatial trend.

The multiple linear regression and random forest models
vary in their strength for the individual analytes. The highest
R2 value from the linear regression is 0.65 for Na+, while to-
tal water-soluble salts, water-soluble N : P ratio, ClO−4 , and
ClO−3 have values of 0.61, 0.60, 0.44, and 0.55, respectively
(Table 2). The lowest R2 value is for PO3−

4 at 0.17. The p val-
ues for all analytes are� 0.001 even with a Bonferroni cor-

rection. The highest out-of-the-box explained variance val-
ues from the random forest models are for total salts and
ClO−3 at 75 % and 63 %, respectively. The lowest explained
variance is for Sr2+ at 37 %. The values of N : P ratio and
ClO−4 are 52 % and 48 %, respectively. We also evaluated the
most important and least important variables in the random
forest models based on node purity. The most important vari-
able for the majority of analytes is elevation, while distance
from the glacier is most important for N : P ratio and lati-
tude for ClO−3 (Table 2). The least important variables are
distance from the coast and latitude for every analyte except
ClO−3 , for which distance from the glacier is least important.

5 Discussion

5.1 Implications for ecological habitat suitability

By establishing geochemical zones for the Shackleton
Glacier region, we can better understand the relationship be-
tween geochemistry and geography and ultimately biogeog-
raphy. As stated in the introduction, we focused particu-
larly on total water-soluble salt concentrations, water-soluble
N : P ratios, and ClO−4 and ClO−3 concentrations.
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Figure 2. Total water-soluble salts, water-soluble N : P molar ratio, and ClO−4 and ClO−3 concentrations (log scale) were compared to eleva-
tion, distance from the coast, and distance from the glacier for samples from the three geographic zones (blue for upper, yellow for middle,
gray for lower zones). Linear regression lines are plotted, for which dashed lines represent regressions where p>0.05 with a Bonferroni
correction, and R2 values are reported for each relationship. The horizontal orange lines represent nematode salt tolerance of ∼ 2600 (Nkem
et al., 2006), and the green lines represent the Redfield ratio, N : P= 16, for phytoplankton in the ocean.

5.1.1 Elevation and moisture controls on total
water-soluble salt gradients

The elevational trends of total salt concentrations at the
Shackleton Glacier are similar to those previously described
in the TAM, where soils from higher elevation sites typically
have higher salt concentrations (Bottos et al., 2020; Lyons et
al., 2016; Magalhães et al., 2012). Our results are also con-
sistent with those from Scarrow et al. (2014) who found that
salt concentrations typically decreased with distance from
the glacier in the Beardmore and Lennox-King glacial re-
gions. Our total water-soluble salt interpolation maps high-

light the spatial variability in Shackleton Glacier region soils
(Fig. 6). The most spatially variable location is Robert Mas-
sif, which does not appear to follow local elevational, lat-
itudinal, and/or distance inland gradients. This heterogene-
ity is not necessarily due to currently active soil leaching as
the soil moisture values are not drastically different between
the samples (Table S2). Though the variability in cation con-
centrations is likely due to the weathering of tills, scree, and
bedrock (Claridge and Campbell, 1968), recent work on the
isotopic composition of water-soluble nitrate and sulfate, the
major anions in the upper zone, suggests a common, atmo-
spheric source (Diaz et al., 2020b).
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Table 2. Out-of-the-box multiple linear regression and random forest model statistics generated in R. All geochemical data were log-
transformed.

Multiple regression Random forest

R2 p value Variance Most Least
explained important important

(%) variable variable

F− 0.47 � 0.001 57 Elevation Distance from coast
Cl− 0.19 � 0.001 60 Elevation Longitude
NO−3 0.52 � 0.001 60 Elevation Longitude
SO2−

4 0.53 � 0.001 62 Elevation Longitude
PO3−

4 0.17 � 0.001 4 Elevation Distance from coast
ClO−4 0.44 � 0.001 48 Elevation Distance from coast
ClO−3 0.55 � 0.001 63 Latitude Distance from glacier
Ca2+ 0.44 � 0.001 60 Elevation Distance from coast
Mg2+ 0.49 � 0.001 61 Elevation Longitude
Na+ 0.65 � 0.001 75 Elevation Longitude
K+ 0.48 � 0.001 60 Elevation Distance from coast
Sr2+ 0.34 � 0.001 37 Elevation Distance from coast
NH3 0.29 � 0.001 38 Elevation Distance from coast
N : P 0.60 � 0.001 52 Distance from glacier Longitude
Total salts 0.61 � 0.001 75 Elevation Longitude

We argue that the heterogeneity in the total salt concentra-
tions at Roberts Massif (Figs. 2, 6) is probably related to dif-
ferent and complex wetting history, in which seasonal snow
patch melt may pool in local depressions, transporting water-
soluble salts from slightly higher elevations and/or from
saline wet patches (Levy et al., 2012). This is demonstrated
on a larger scale at Thanksgiving Valley, a glacially carved
valley where the higher concentrations of salts in the cen-
ter of the valley are likely due to the transport of salts from
nearby higher elevation slopes during melting events. This
is further evidenced by the presence of two small, closed-
basin ponds in the center of the valley which likely formed
from glacial melt and may have been larger in size in the re-
cent past (Diaz et al., 2020). Similarly, streams and meltwa-
ter tracks in the MDV leach soils and carry salts into closed-
basin, brackish to hyper-saline lakes where salts are cryocon-
centrated over time (Lyons et al., 1998). Our results suggest
that elevation and wetting history are important contributors
to total salt gradients in the Shackleton Glacier region as they
influence the accumulation of salts and subsequent leaching
from soils.

5.1.2 Influence of glacial history on water-soluble N : P
ratios

Stoichiometric dependencies have been identified for Antarc-
tic terrestrial organisms, in which nutrient concentrations, in
addition to soil aridity, limit ecosystem development (Nkem
et al., 2006). Since nitrate is primarily derived from at-
mospheric deposition and phosphorus is primarily liberated
from minerals by chemical weathering in the CTAM, many

inland and higher elevation soils have accumulated high con-
centrations of NO−3 , resulting in stoichiometric imbalance
with soluble PO3−

4 (Ball et al., 2018; Barrett et al., 2007;
Diaz et al., 2020b; Lyons et al., 2016; Nkem et al., 2006). As
in the MDV, younger and coastal soils at lower elevations in
the Shackleton Glacier region have the lowest water-soluble
N : P ratios driven by relatively low concentrations of NO−3
and high concentrations of PO3−

4 due to an increase in mois-
ture content and chemical weathering (Heindel et al., 2017)
(Figs. 2, 4). It is not surprising that life was conspicuous in
these soils with thick lichen growth on several rocks and the
presence of both Collembola and mites at Mt. Speed and Mt.
Wasko (Fig. S1). However, despite overall elevational and
latitudinal gradients, some inland locations in the middle and
upper zones have water-soluble N : P ratios near those from
the lower zone (Fig. 2).

The interpolation model from Bennett Platform shows
that some locations near the glacier have lower total water-
soluble salt concentrations (Fig. 6), similar to soils surveyed
in the MDV (Bockheim, 2002). However, the samples near
the glacier at Bennett Platform not only have lower total salt
concentrations, they also have lower N : P ratios than sam-
ples collected further inland. This is also the case for the
middle zone locations (Fig. 2f). We argue that this is due to
differences in glacial history between the locations. Our pre-
vious work showed that soils near the glacier are younger
than soils further inland in the Shackleton Glacier region
(Diaz et al., 2020a). These soils are shielded from nitrate ac-
cumulation during glacial periods, and the recently exposed
rocks likely serve as fresh mineral weathering material for
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Figure 3. Anion and cation ternary diagrams for the three geo-
graphic zones.

PO3−
4 mobilization (Heindel et al., 2017). Recently exposed

and relatively nutrient-rich soils might be important refu-
gia for invertebrates. Previous hypotheses have suggested
that organisms may have persisted at higher elevations dur-
ing glacial periods (Bennett et al., 2016; Stevens and Hogg,
2003). However, abiotic gradients in the Beardmore Glacier
region suggest that higher elevation soils have salt concentra-
tions that would classify them as unsuitable habitats (Lyons
et al., 2016). If few organisms survived glaciations, the near-
glacier, relatively P-rich soils may be important in helping
communities recover and restructure post-glaciation.

5.1.3 High and variable ClO−4 and ClO−3
concentrations

Our ClO−4 and ClO−3 concentrations include the highest mea-
sured in Antarctica to date and are comparable to concen-

Figure 4. Principal component analysis (PCA) biplot generated in
R using factoextra and built in R software libraries with all anions,
cations, nutrients, and soil moisture for the three geographic zones.
The PCA is based on the correlation matrix (i.e., scale=TRUE).
Principal component 1 and principal component 2 are plotted on
the x and y axes, respectively. Shaded ellipses represent 95 % con-
fidence intervals.

Figure 5. Spearman’s rank correlation matrix generated in r using
the corrplot library. The colors represent correlation coefficients, in-
dicating the strength and magnitude of the correlation. The blue box
indicates the geographic variables and soil moisture, which were
variables used in the multiple linear regression and random forest
models. Familywise Type 1 error corrections were not applied in
this analysis.
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Figure 6. Inverse distance weighted (IDW) interpolations of total salt concentration for Roberts Massif (a), Bennett Platform (b), and
Thanksgiving Valley (c). The color scale represents the 10 natural breaks in the data. Interpolations were created and mapped using the
Geostatistical Analyst tool in ArcMap 10.3.

trations from the Atacama and Mojave deserts (Jackson et
al., 2015). Though not a strong correlation, the highest el-
evation samples (upper zone) have the highest ClO−4 and
ClO−3 concentrations (Fig. 2g, j). Similar to NO−3 , ClO−4
and ClO−3 are derived from atmospheric deposition, and, be-
cause of their high solubilities, their accumulations are re-
lated to wetting and glacial histories (Jackson et al., 2016,
2015). Therefore, soils which have been exposed for long
periods of time and have not experienced snow or ice melt,
such as those from Schroeder Hill and Roberts Massif, are
able to accumulate high concentrations of ClO−4 and ClO−3 .
Interestingly, our ClO−4 concentrations are lower – maxi-
mum of ∼ 1.9 g L−1 – than the highest recorded tolerance –
1.1 M (∼ 130 g L−1) NaClO4 – for the extremotolerant bacte-
ria Planococcus halocryophilus, yet a recent study shows no
detectable biomass for Schroeder Hill samples (Dragone et
al., 2020). (Per)chlorates are strong oxidizers and are well es-
tablished as toxic; thus the concentrations of ClO−4 and ClO−3
might be additional, crucial indicators of habitat suitability.
However, the concentrations are highly heterogenous across
our sampled locations (Fig. 2k–l), and unlike ClO−3 , neither
the multiple linear regression nor random forest models were
able to adequately capture the variability in ClO−4 concentra-
tions (Table 2).

5.2 Machine learning as a tool to predict soil
geochemical trends

We sought to evaluate our multiple linear regression and ran-
dom forest models using a testing dataset from the Shack-
leton Glacier region (n= 31) and a second dataset from
the Darwin Mountains (∼ 80◦ S) (n= 10) (Magalhães et al.,
2012). Few published/available TAM datasets include sam-

ple GPS coordinates, soil moisture, and water-soluble ion
geochemistry. As stated in Sect. 3.3, the Shackleton Glacier
region test data were not included in the random forest model
generation so we could evaluate our models with an inde-
pendent dataset. For the Darwin dataset, distance from the
glacier, distance from the coast, and elevation were deter-
mined using the Reference Elevation Model of Antarctica
(REMA), while location, soil moisture, and geochemistry
were retrieved from the literature (Howat et al., 2019; Ma-
galhães et al., 2012). We evaluated all 15 analytes from the
original models with the Shackleton dataset and, due to a lack
of data, only evaluated seven analytes from the Darwin soils
(Fig. 7).

Both the multiple linear regression and random forest
model outputs are moderately well-correlated for the Shack-
leton dataset, as determined by Pearson correlations between
the measured and predicted values (Fig. 7a; Table 3). The
random forest models outperform the linear regression mod-
els for nearly every analyte with the exception of Sr2+, NH3,
and PO3−

4 , and nearly all p values are <0.001. For Cl−,
in particular, the random forest model significantly outper-
forms the multiple linear regression model with R2 values
of 0.67 and 0.16, respectively. N : P molar ratio is the most
accurately predicted analyte with R2 values of 0.88 and 0.59
for the random forest and linear regression models, respec-
tively. However, the highest R2 value for the multiple lin-
ear regression model is for Na+ at 0.64 (Table 3). In terms
of our analytes of interest regarding habitat suitability, total
salts have the second strongest correlation (following N : P
ratio) with the random forest model (R2

= 0.81), followed
by ClO−4 (R2

= 0.78) and ClO−3 (R2
= 0.74). MAE and root

mean squared error (RMSE) values indicate that the ran-
dom forest models also have a smaller error compared to
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Table 3. Multiple linear regression and random forest statistics between predicted and measured concentrations from the Shackleton and
Darwin Glacier regions. R2 and p values are reported for the correlations between measured and predicted concentrations. Regression slopes
and test statistic values (t) were calculated using the smatr library (Warton et al., 2012) in R to evaluate the null hypothesis (H0) of slope= 1.
Higher test statistic values (closer to 1) indicate that we reject the null hypothesis. All geochemical data were log-transformed.

Multiple linear regression Random forest

Analyte R2 p value Reg. slope Test statistic (t) R2 p value Reg. slope Test statistic (t)
for H0 slope= 1 for H0 slope= 1

Shackleton

N : P ratio 0.59 <0.001 0.58 −0.720 0.88 � 0.001 0.64 −0.792
Total salts 0.61 � 0.001 0.71 −0.483∗ 0.81 � 0.001 0.86 −0.324∗

Na+ 0.64 � 0.001 0.76 −0.424∗ 0.80 � 0.001 0.89 −0.262∗

ClO−4 0.52 <0.001 0.60 −0.614 0.78 � 0.001 0.71 −0.590
ClO−3 0.55 0.009 0.72 −0.454∗ 0.74 <0.001 0.86 −0.284∗

Mg2+ 0.46 � 0.001 0.63 −0.550 0.73 � 0.001 0.76 −0.469∗

Ca2+ 0.41 <0.001 0.57 −0.613 0.73 � 0.001 0.74 −0.512
NO−3 0.59 � 0.001 0.62 −0.615 0.70 � 0.001 0.75 −0.465∗

Sr2+ 0.35 0.026 0.54 −0.631 0.67 <0.001 0.82 −0.326∗

SO2−
4 0.57 � 0.001 0.63 −0.584 0.67 � 0.001 0.83 −0.310∗

Cl− 0.16 0.028 0.38 −0.773 0.67 � 0.001 0.76 −0.428∗

K+ 0.39 <0.001 0.69 −0.429∗ 0.61 � 0.001 0.83 −0.291∗

F− 0.46 <0.001 0.76 −0.352∗ 0.51 � 0.001 0.91 −0.141∗∗

NH3 0.12 0.052 0.57 −0.528 0.11 0.068 0.61 −0.475∗

PO3−
4 0.29 0.070 0.32 −0.857 0.07 0.408 0.38 −0.764

Darwin

N : P ratio – – – – 0.68 0.021 0.54 −0.765
Ca2+ 0.76 0.001 0.66 −0.645 0.66 0.004 0.50 −0.785
NO−3 – – – – 0.66 0.004 0.49 −0.794
Cl− – – – – 0.64 0.005 0.22 −0.962
Mg2+ – – – – 0.60 0.140 0.67 −0.544
Na+ – – – – 0.59 0.160 0.42 −0.836
Total salts – – – – 0.47 0.028 0.42 −0.802
K+ 0.45 0.070 0.62 −0.550 0.20 0.267 0.28 −0.882

∗ t<0.5; ∗∗ t<0.20.

the multiple linear regression models (Table 4). MAE val-
ues are lower than RMSE values for both models, indicating
the strong influence of outliers in the testing dataset. This
is unsurprising as the standard deviation and coefficient of
variation values for the entire dataset are relatively large for
all analytes. Additionally, the outliers are likely one reason
why the random forest models are stronger than the multiple
linear regression models.

Similar to the model performance in the Shackleton
Glacier region, the water-soluble ion predictions for the Dar-
win Glacier region are more strongly correlated with mea-
sured values in the random forest models compared to the
multiple linear regressions (Fig. 7b). In fact, the linear re-
gression models fail for nearly all the Darwin samples, and
most concentration outputs are negative, which is likely due
to overfitting during model generation. Here, Ca2+ and K+

are exceptions, and the multiple linear regression models out-

perform the random forest models in both cases. MAE and
RMSE values for both models are higher than those for the
Shackleton dataset (Table 4). On the other hand, the random
forest models perform particularly well for some analytes.
Though a small sample size, the R2 values for N : P molar
ratio and Ca2+ are 0.68 and 0.66, respectively, with p values
� 0.001. Total salts is moderately correlated (R2

= 0.47).
It is unclear why some analytes, such as N : P molar ratio,
are the most accurately predicted, though we suspect that
this is due to (1) weathering trends of local lithology across
the TAM since chemical weathering is probably the major
source of these ions and (2) deposition and accumulation of
atmospherically derived ions at higher elevations (Diaz et al.,
2020b).

It should be noted that the R2 values simply measure the
strength of the correlations between the measured and pre-
dicted values. We performed slope tests by fitting bivariate
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Table 4. Multiple linear regression and random forest mean abso-
lute error (MAE) and root mean squared error (RMSE). All geo-
chemical data were log-transformed for the analysis.

Multiple linear regression Random forest

Analyte MAE RMSE MAE RMSE

Shackleton

N : P ratio 2.19 2.73 1.75 2.11
Total salts 1.45 1.69 0.86 1.17
Na+ 1.23 1.52 0.83 1.13
ClO−4 1.33 1.62 0.91 1.12
ClO−3 1.07 1.67 1.01 1.26
Mg2+ 1.78 2.08 1.07 1.48
Ca2+ 1.84 2.21 1.18 1.53
NO−3 1.96 2.29 1.56 1.93
Sr2+ 1.05 1.17 0.59 0.82
SO2−

4 1.58 1.94 1.35 1.67
Cl− 2.11 2.39 1.07 1.5
K+ 0.73 0.89 0.56 0.72
F− 0.48 0.6 0.46 0.58
NH3 0.67 0.83 0.65 0.86
PO3−

4 0.75 0.96 0.78 1.14

Darwin

N : P ratio 267 267 1.48 1.73
Ca2+ 5.79 5.85 2.63 2.83
NO−3 261 261 3.19 3.52
Cl− 372 372 2.99 3.32
Mg2+ 460 460 2.89 3.06
Na+ 245 245 2.57 2.88
Total salts 139 139 1.22 1.67
K+ 30.8 30.8 1.00 1.19

lines using the standardized major axis (SMA) to further
understand the relationship between the two values using
the smatr library in R (Warton et al., 2012). For this test,
we specifically evaluated the null hypothesis (H0) in which
slope= 1, which would indicate whether an ideal, direct 1 : 1
relationship exists between the measured and predicted val-
ues. Test statistic values (t) were used to measure the sample
correlation between the residuals and fitted values (Warton
et al., 2012). Test statistic values near 1 indicate that we re-
ject the null hypothesis. In other words, higher absolute test
statistic values indicate a slope other than 1. Of the 15 ana-
lytes in the Shackleton dataset, 5 analytes have slopes near 1
for the multiple linear regression models and 11 for the ran-
dom forest, as indicated by test statistic values less than 0.5.
For the Darwin, no analytes have test statistic values less than
0.5 (Fig. 7; Table 3).

These data indicate that while some analytes have high
correlations between measured and predicted values, the
models perform best with the Shackleton Glacier region
soils. Additionally, though the relationship may not be 1 : 1,

Figure 7. R2 values for the multiple linear regression and random
forest predicted and measured values for the different analytes (Ta-
ble 3). Test datasets include the Shackleton Glacier region (n= 31)
and the Darwin Glacier region (n= 10) (Magalhães et al., 2012).
Analytes with slopes near 1, indicating good agreement between
measured and predicted values, are indicated (∗ t<0.5; ∗∗ t<0.20).

the random forest models are effective at predicting the mea-
sured geochemical gradients. For example, similar to our
data, the Darwin Glacier samples generally have greater
water-soluble N : P ratios and total water-soluble salt concen-
trations further from the glacier and at higher elevations (Ma-
galhães et al., 2012), a trend that is reflected by our model
results despite offset values. Additionally, corrections for the
offset of the model from a slope= 1 (i.e., multiplying the
model output value by the regression slope) can be made to
better estimate specific concentrations, though the difference
between modeled and measured values can still be up to 2
times greater. Our sample size for building the multiple linear
regression and random forest models is small. We anticipate
that as more data are collected throughout the CTAM, these
data can be added to the model training dataset, expanding
our prediction capabilities and increasing model reliability.
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6 Conclusions

The soil ecosystems found in the Transantarctic Mountains
are among the least diverse on Earth, and their structure
is influenced by environmental variables. We characterized
environmental and geochemical gradients in the Shackleton
Glacier region, which will aid in our understanding of the
abiotic properties in soils governing biodiversity and bio-
geography. The 220 samples we analyzed represent a wide
range of soil environments: those with different elevation,
latitude, longitude, glacial history, and geochemistry. We de-
termined three soil zones: an upper zone near the head of
the glacier which is characterized by high total water-soluble
salt concentrations, high water-soluble N : P ratios, and high
ClO−4 and ClO−3 concentrations, a lower zone with low to-
tal salt concentrations and higher PO3−

4 concentrations, and
a middle zone with intermediate values. The zones help elu-
cidate the geographic influences on soil geochemistry. In ad-
dition, our total water-soluble salt interpolations at Roberts
Massif, Bennett Platform, and Thanksgiving Valley reflect
the local small-scale variability in salt concentrations and
possible influences from soil age and wetting history.

Similar to previous studies, our results suggest that high el-
evation and inland soils, such as those from the upper zone,
were likely unsuitable candidates for refugia during the Last
Glacial Maximum. However, glacial advance and retreat and
climate shifts may leach soils, lowering otherwise toxic to-
tal water-soluble salt concentrations and N : P ratios. These
more recently exposed soils may be particularly important in
maintaining and reviving contemporary and past biological
communities.

Five geographic variables (latitude, longitude, elevation,
distance from the coast, and distance from the glacier) and
soil moisture were correlated with soil geochemistry. We
used these variables to develop multiple linear regression
and random forest models to predict ion concentrations
and geochemical gradients. The model results generally re-
flected the measured geochemical variability across the re-
gion. Test datasets from the Shackleton and Darwin Glacier
regions showed that the random forest models typically out-
performed the multiple linear regression models when cor-
relating measured and predicted values, especially for the
Darwin region. Though most correlations did not exhibit a
1 : 1 relationship and had varying slopes, the random forest
models were able to adequately predict geochemical gradi-
ents, as demonstrated by moderate to high R2 values between
measured and model predicted concentrations. As terrestrial
Antarctic geochemical databases expand and are included in
the random forest model training dataset, we anticipate the
model’s predictive capabilities will expand and improve as
well. While these results are currently most applicable for
central Transantarctic Mountain soils, similar techniques can
be applied to other hyper-arid environments (e.g., Namib and
Atacama deserts, Mars) to inform patterns of biodiversity and
biogeography.
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