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ABSTRACT: 

 

High-precision indoor positioning in complex environments has always been a hot research topic within the positioning and robotic 

communities. As one of the indoor positioning technologies, geomagnetic positioning is receiving widespread attention due to its 

global coverage. Additionally, geomagnetic positioning does not require special infrastructure configuration, its hardware cost is low, 

and its positioning errors do not accumulate over time. However, geomagnetic positioning is prone to mismatching, which causes 

serious problems at the positioning points. To tackle this challenge, this paper proposes an indoor localization method based on 

spectral clustering and weighted back-propagation neural network. The main research contribution is that in the offline phase, the 

spatial specificity of geomagnetism is used to define the similarity between fingerprints. In addition, a clustering-based reference 

point algorithm is proposed to divide the sub-fingerprint database, and a positioning prediction model based on back-propagation 

neural network is trained. Subsequently, in the online stage, the weights of different positioning prediction models are calculated 

according to the defined fingerprint similarity, weighted average prediction coordinates are obtained, and thereby the positioning 

accuracy is improved. Experimental results show that, in comparison with other neural network-based positioning methods, the 

positioning error of our proposed algorithm is reduced by approximately 26.6% and the positioning time is reduced by 24.7%. 

Experimental results show that the average positioning error of the algorithm is 1.81m. 
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1. INTRODUCTION 

Recent advances in key technological innovations such as high-

performance chips, 5G communication networks, and“Internet 

Protocol Version 6 (IPV6), has promoted the rapid development 

of pervasive computing technology (Bolad and Akcakoca 2018). 

At present, common indoor positioning technologies include 

infrared positioning(Mohebbi, Stroulia, and Nikolaidis 2017), 

Bluetooth(Cao et al., n.d.), Ultra Wide Band (UWB)(Duanyang 

et al. 2018), Radio Frequency Identification (RFID) (Seco and 

Jiménez 2018), Wi-Fi(Mendoza-Silva, Torres-Sospedra, and 

Huerta 2017), ultrasonic (Medina, Segura, and De la Torre 

2013), microphone array(Funke et al. 2014), among others. 

These positioning methods are based on the propagation of 

wireless signals, which are easy to obtain and can be located 

using existing indoor wireless networks. In an indoor 

environment with a large number of people (e.g., shopping 

malls, hospitals, etc.), the absorption of wireless signals by the 

human body cannot be ignored, so these methods are difficult to 

meet the application requirements of high-precision indoor 

positioning. Increasingly, researchers are turning their attention 

to indoor positioning technology based on the geomagnetic field. 

The geomagnetic field, as an inherent resource of the earth, has 

the advantages of being all-weather, all-area, low energy 

consumption, passive, no radiation, among others. Modern 

architectures widely use ferromagnetic materials, such as steel. 

These materials can produce abnormal values of the 

geomagnetic field, and thus form indoor magnetic fingerprints 

that are related to location. As such, the use of the geomagnetic 

field for indoor positioning has substantial potentials(Zhang et 

al. 2015). 

 

At the Mobisy 2011 International Conference, the MIT Media 

Lab (Chung et al. 2011)used a self-developed magnetic model 

and a magnetic fingerprint acquisition device, which achieved a 

positioning accuracy of better than 1 m at the 88% probability 

level. In 2012, Stainford University EinenelM (Le Grand and 

Thrun 2012) developed an indoor magnetic fingerprint 

matching and positioning technology based on commercial 

intelligent terminals. They tested it in a classroom and they 

were able to achieve a positioning accuracy of 0.7 m in a 

straight path and 1.2 m in a circular path. In 2016, Li et al. (Li et 

al. 2016) used a Kalman filter to fuse geomagnetism and inertial 

navigation to enhance the positioning performance of areas with 

poor Wi-Fi signal coverage. The spatial distinguishability and 

stability of indoor geomagnetic features are analysed, and the 

feasibility of magnetic field information for indoor positioning 

is verified. 

 

Recently, researchers have attempted indoor geomagnetic 

positioning using deep learning and artificial neural networks. 

Ruiqing proposed a geomagnetic positioning algorithm based 

on deep neural network, which first converts the geomagnetic 

observations from the time domain to the distance domain, and 

then extracts a recursive map of the geomagnetic observation 

sequence. The variation trend and length of the geomagnetic 

observation sequence are used as features. A deep neural 

network was developed, which recognizes the position 

information corresponding to each geomagnetic feature 

sequence to achieve positioning. Wang (Bayev et al. 

2019)proposed a geomagnetic positioning system based on 

long-term short-term memory network (Long Short-Term 

Memory, LSTM). In 2017, Jiao Jichao and others (Jiao et al. 

2017)used a deep convolutional neural network for camera 

image-based indoor positioning in a crowded environment. Jang 

et al.(Jang, Shin, and Choi 2018) proposed an indoor 

geomagnetic positioning model based on a recursive neural 

network (RNN). Their model combines the current three-

dimensional geomagnetic observations with past geomagnetic 

sequences to improve the geomagnetic spatial resolution, and 

optimized the number of hidden layer nodes and other 

parameters using Tensorflow (Bae and Choi 2019)to train 

millions of geomagnetic trajectory data. A meter-level 

positioning accuracy was achieved.  

 

To solve the problem of expensive indoor positioning 

technology requirements, this paper uses natural geomagnetic 

technology without additional facilities, and proposes an indoor 

positioning method based on spectral clustering and weighted 

back propagation neural network. The paper is organized as 

follows: Section 1 introduces related research studies, Section 2 

introduces the geomagnetic indoor positioning, Section 3 

provides a detailed description of the algorithm, Section 4 

presents experimental results and their analysis, and finally 

Section 5 draws some concluding remarks. 

 

2. GEOMAGNETIC INDOOR POSITIONING BASED 

ON POSITION FINGERPRINT 

2.1 Fingerprint positioning 

Geomagnetic positioning can be considered as a fingerprint 

positioning method(Huang et al. 2018). The idea of fingerprint 

positioning is derived from the pattern recognition theory, 

which estimates the physical location by matching it with the 

recorded fingerprints. To do so, the following two conditions 

must be met. Firstly, fingerprints are related to locations, and 

each location has its own unique fingerprint. In other words, the 

higher the fingerprint uniqueness at different locations, the 

higher the positioning accuracy. Secondly, the distance between 

different locations is related to the similarity between their 

fingerprints. However, in an actual indoor environment, there is 

no specific one-to-one correspondence between fingerprints and 

physical locations based on geomagnetic characteristics. On the 

other hand, because of limited storage, it is not possible to 

record fingerprints of all locations in an experimental 

environment. Therefore, we try to match locations with higher 

fingerprint similarity among the recorded fingerprints to reduce 

positioning errors. 

  

2.2 Concept of geomagnetic indoor positioning  

Geomagnetic fingerprint positioning is generally divided into 

two phases, namely the offline phase and the online phase. As 

shown in Figure 1, the offline phase collects geomagnetic 

fingerprint information in a pre-selected indoor area to establish 

a geomagnetic fingerprint database. When the target moves 

through the area where the geomagnetic reference map is 

established, the hardware embedded in the magnetometer can 

obtain the characteristic value information of the geomagnetic 

field in real time. Subsequently, the hardware matches it with 

the geomagnetic information in the geomagnetic fingerprint 

database by using related algorithms to match the collected 

geomagnetic signal with the fingerprint database. The most 

similar point in the database is chosen, which represents the 

precise location of the target. The fingerprint and physical 

locations do not correspond one-to-one in the actual indoor 

environment, and the user's location may not necessarily be 

recorded in the database during positioning. 
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Figure 1. Geomagnetic indoor positioning 

 

Therefore, the fingerprint positioning algorithm needs to learn a 

very complicated mapping relationship between the fingerprint 

and the location, or the similarity of fingerprints of different 

locations, and match or predict the physical location based on 

the fingerprint. Specifically, we refer to the database that stores 

related information as a fingerprint map. The location where the 

fingerprint is selected before localization is called the reference 

point (RP), while the predicted location is called test point (TP). 

 

3. SPECTRAL CLUSTERING AND WEIGHTED 

BACKPROPAGATION NEURAL NETWORKS 

3.1 SWBN 

Spectral clustering and weighted back propagation neural 

network (SWBN) algorithm attempts to improve the accuracy of 

indoor positioning by using natural geomagnetic characteristics 

only. In the offline stage, the similarity between fingerprints is 

identified based on the correlation of different geomagnetic 

spaces, and a reference point clustering algorithm based on 

spectral clustering is used in order to divide the sub-fingerprint 

database. In the online phase, a weighted back propagation 

neural network positioning algorithm is used in order to 

improve the positioning accuracy. The flow of the proposed 

SWBN positioning method is shown in Figure 2. 

 

 

Figure 2. SWBN positioning method 

 

3.2 Point clustering algorithm based on spectral clustering 

3.2.1 Principle                                                                   

In order to improve the accuracy of the geomagnetic fingerprint 

reference map and improve the positioning accuracy, it is 

necessary to cluster the reference points using a clustering 

algorithm, so that the similarity of fingerprints of the reference 

points within the cluster is higher, and the similarity of the 

reference points between different clusters is lower. In this 

paper, we define the similarity between fingerprints, and use 

spectral clustering to cluster all collected reference points to 

divide multiple sub-fingerprint libraries. 

 

The idea of spectral clustering evolved from graph theory(Ding 

et al. 2013) A weighted undirected graph is constructed by 

taking data samples as vertices and the relationships between 

data samples as edges, and then defining the similarity between 

data as edges. The process of data clustering involves dividing 

the weighted undirected graph into multiple optimal subgraphs, 

so that the data similarity in the subgraphs is high and the data 

similarity between different subgraphs is low. In essence, the 

spectral clustering algorithm is a process of clustering the 

feature vectors of the Laplacian matrix through K-means, which 

can be summarized as the following steps: 

(a)Build an undirected graph based on the data; 

(b)Generate the adjacency matrix of the graph; 

(c)Normalize the Laplacian matrix; 

(d)Calculate the first K feature vectors arranged in ascending 

order of eigenvalues; 

(e)Use K-means clustering algorithm to cluster feature vectors. 

 

3.2.2 Reference point clustering algorithm based on 

spectral clustering 

 

The proposed spectral clustering algorithm can be summarized 

as follows: 

 

(a) Calculation of the similarity matrix of geomagnetic 

fingerprint data: 

Since there is a similarity between the two reference points, the 

fingerprint similarity matrix S is a matrix of
GP GPN N , which 

can be expressed as: 
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This matrix represents the weights of edges in an undirected 

graph, where  , 0( , 1, )i j RPs i j N   represents the cosine 

similarity of the fingerprint vectors of the -i th  RP and the 

-j th  RP, calculated using the following formula 
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                         (2) 

(b) Construction of a weighted undirected graph: 

Construct a weighted undirected graph  , ,G E S  based on 

the data in the fingerprint database. Specifically, each reference 

point is taken as the vertex of the undirected graph, where 

  1, , , 1,j RPj N                   (3) 

and 
j  represents the -j th  vertex; Take the relationship 

between any two reference points as the edge of an undirected 

graph: 

  , ,i j i jE                             (4) 

Represents the set of all edges in an undirected graph; the 

fingerprint similarity between the reference points is taken as 

the weight of the edges in the undirected graph, that is, the 

fingerprint similarity matrix S . 

(c) Forming Laplacian matrix: 

  Firstly, form a diagonal matrix D  of  size
RP RPN N ： 

11 0

0
RP RPN N

d

D

d

 
 

  
 
 

                             (5) 

The elements on diagonal line are obtained by accumulating S  

by row, that is, 

 
1

( , ), 1,
RPN

ii i j RP

j

d S i N 


                  (6) 

The normalized Laplacian matrix is then calculated using the D 

and the similarity matrices: 
1 1

2 2
normL D SD

 

                            (7) 

 (d) Calculation of the feature matrix of 
normL  

The singular value decomposition (SVD) is used to calculate the 

CN  largest feature values and their feature vectors in the 
normL  

matrix, and the 
CN  feature vectors are used to form a 

RP RPN N  feature matrix and normalized. Take the
CN  largest 

feature values and their feature vectors to form the feature 

matrix U of
RP CN N . 

(e) Use K-Means to cluster the feature matrix by rows 

K-Means clustering is performed on the feature matrix U  to 

obtain a
RPN -dimensional vector. The -j th  element in C

represents the cluster to which the -j th reference point belongs 

(that is, the sub-fingerprint database). 

 

3.3 Weighted back-propagation neural networks 

3.3.1 Principle   

A neuron is the basic unit of a neural network and is a design 

that mimics a neuron cell in an organism. Suppose there are n  

connected neurons. The mathematical model of these neurons 

includes the input vector  1 2, , ,
T

nX x x x (The electrical 

signals from other neurons connected to it),Weight matrix 

 1 2, , ,
T

nW w w w ， bias vector  1 2, , ,
T

nb b b b  (W 

and b are similar to the synaptic properties of each connection), 

The input to the Activation Functions ("semaphore" passed) is  

1

n

i i i

i

z W X b w x b


                      (8) 

According to the activation function ( )f z  passed to the next 

level (whether the cell body is activated), the output is 

( ) ( )a f z f W X b                            (9) 

Neural networks add non-linear factors through activation 

functions to improve the model's ability to analyse and map 

complex problems.  

 

3.3.2 SWBN Online Positioning 

The online phase estimates the positioning of the object. When 

receiving the positioning request of the object, the processing 

flow of SWBN is as follows: process the data to construct the 

fingerprint vector of the object, calculate the positioning weight 

set of the object, and calculate the predicted coordinates 

according to the back propagation neural network positioning 

algorithm to obtain weighted prediction coordinates. The 

detailed algorithm flow is presented in Table1 as follows: 

 

Input： 

       , :i i iTP r ID  Fingerprint vector of the i  point to be tested 

      :CN   Number of sub-fingerprint database 

      :KN   Using weights to calculate parameters 

      
1, , , , :

RPj NC c c c   
 RP  Clustering label vector 

Output ： 

       , , :p x y z   Prediction coordinate 

S1:Data processing ： 

    Exception point handling, normalization  , .i i iTP r ID  

S2:Calculate the set of prediction coordinates   , 1, :k Cp p k N   

    After processing,  ,i i iTP r ID  is used as the input of 
CN BPNN 

positioning models, and the output is de-normalized to get the 
corresponding positioning prediction coordinates. 

S3:Calculate the positioning weight set   , 1, :k CW w k N   

S3.1: The fingerprint similarity of 
iTP  and 

jTP  is calculated, and the 

fingerprint similarity set is   , 1, :ij RPa j N  

                     
 

,
( , ) , 1, :

i j

ij i j RP

i j

TP TP
a Sim TP TP j N

TP TP
  

 

S3.2:Sort the cosine similarity set in descending order: 

S3.3: RP  clustering tag corresponding to cosine similarity, recorded as 

set :  

S3.4: Calculate the weight of the k  prediction coordinate :kp   

                                      
RP

k

K

n

N
 

 

Where 
RPn  is the number of reference points corresponding to the k  

fingerprint database. 
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S4:Calculate weighted prediction coordinates  , ,p x y z ,where
kp p  

                                      

1

CN

k k

k

p p



 

Table 1. Location algorithm based on weighted back 

propagation neural networks 

 

The first step is data processing. The abnormal points of the 

geomagnetic data of the object are processed and normalized to 

obtain the fingerprint vector of the object, that is, the input of 

the weighted back-propagation neural network. The fingerprint 

vector of the -i th  point to be measured is denoted as

 ,i i iTP r ID , where ir  represents its geomagnetic vector, and

iID  represents the BSSID list. 

 

In the second step, 
iTP  is used as the input of the 

CN  BPNN 

positioning prediction models, and then 
CN  prediction 

coordinates are obtained. Let the output of the k kth positioning 

prediction model be ( , , )k k k kp x y z , then the prediction 

coordinate set: 

  , 1,k Cp p k N                         (10) 

 

The third step is to calculate the location weight set of the 

fingerprint vector of the point to be measured. In the offline 

stage, the fingerprint database is divided into 
CN  sub-

fingerprint databases according to the reference point clustering 

method based on spectral clustering, and corresponds to 
CN  

BPNN location prediction model. Therefore, for this BPNN 

positioning prediction model, the weight set 

  , 1,k CW w k N   is calculated based on the similarity 

with the reference points in the sub-fingerprint database, and the 

positioning accuracy is improved by weighting. 

 

4. GEOMAGNETIC INDOOR LOCATION BASED ON 

SPECTRAL CLUSTERING AND WEIGHTED 

BACKPROPAGATION NEURAL NETWORKS 

4.1 Data acquisition 

In order to verify the SWBN algorithm, we selected five floors 

of the School of Surveying and Mapping of Beijing University 

of Architecture as the experimental scene, as shown in Figure 3. 

The experimental environment is divided into four grid areas 

with dimensions of 1.2 × 27, 1.8 × 12, 2.4 × 10.4, 2.4 × 12m 2. 

The reference two-dimensional coordinate system (grid 

coordinate system) is established with the floor grid as the 

standard, each grid is 0.6m, the walking step length along this 

interval is about 0.6m, the mobile phone is kept at the waist 

height, and points in the forward direction. 

 

The data acquisition software developed based on IndooratAtlas 

software developed by the Nokia 7 smartphone is used to collect 

data at a sampling rate of 25 Hz to generate a three-dimensional 

vector with a unit of T . The data collection time of each node 

in the grid is 10 s, that is, 10 sets of geomagnetic data values are 

collected, and the average value is taken to ensure the accuracy 

of geomagnetic data. 

 

The reference points and test points are evenly distributed in the 

area to be measured. The solid points in the figure are the data 

collection reference points, a total of 421. 

 

 

 

Figure 3. Experimental route area plan and coordinate system 

setting 

 

4.2 To construct a fingerprint map of geomagnetism 

The establishment of a high-precision database is essential for 

geomagnetic positioning. The stronger the magnetic field, the 

more accurately the position can be determined. 

 

Building an accurate magnetic field map (centimeter or sub-

centimeter accuracy) in the offline phase can be achieved in an 

indoor environment because the built-in triple magnetometer of 

the smartphone always has a high sampling rate (25 Hz). 

In addition, for the unacquired area, geomagnetic data is 

obtained by interpolating the sparse data intervals to generate 

values between these reference points (one sample point interval 

is 0.1 m). As shown in Figure 4, a geomagnetic reference map is 

generated. From the figure, we can find that the geomagnetic 

characteristics of different regions are very obvious. The 

Bayesian non-parametric method is used to interpolate the 

magnetic field. The prior knowledge about the characteristics of 

the magnetic field is incorporated into the Gaussian process 

(GP). 

 

Three geomagnetic features were extracted during the 

experiment. Previous research experiments (Qiu et al. 

2019)showed that compared with the total magnetic strength 

alone, if the three-component geomagnetic values of x, y and z 

match, the accuracy is higher, so this paper stores x, Three-

component geomagnetic value of y and z. The interpolation 

method is used to create three magnetic fingerprints, 

respectively in the direction of gravity, the horizontal direction 

and the composite direction of the magnetic field. 

 

After acquiring the magnetic field strength fingerprint data, 

convert the fingerprint to a magnetic field strength value pattern 

and store it in the fingerprint database. 

 

Figure 4. Construction of geomagnetic reference map 
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4.3 Analysis of experimental results 

To assess our algorithm, we compared our proposed positioning 

method with some traditional indoor positioning methods 

FIFS(Xiao et al. 2012) and Deep Fi(Wang et al. 2015). 

 

As shown in Figure 5, Table 2-3, the method used in this paper 

is better than FIFS and Deep Fi. When using the Deep Fi 

positioning method, the average error distance of the 

positioning is 2.34m, the minimum error distance is 0.79m, and 

the maximum error distance is 3.41m. The probability of the 

error distance within 1m is 11%, the probability of the error 

distance within 2m is 25%, and the probability of the error 

distance within 3m is 89%. Compared to the initial library 

positioning accuracy, the positioning accuracy of the Deep Fi 

positioning method is improved by 22.6%. 

 

 

Figure 5. Geomagnetic indoor positioning 

 

Method Min/m Max/m Mean/m 

DeepFi 0.79 3.41 2.34 

FIFS 0.87 3.76 2.61 

SWBN 0.64 2.85 1.81 

Table 2. Positioning errors of different positioning methods 

 

Method 1m 2m 3m 4m 

DeepFi 11% 25% 89% 100% 

FIFS 7% 31% 76% 100% 

SWBN 13% 74% 100%  

Table 3. Percentage of positioning errors for different 

positioning methods 

 

When using the FIFS positioning method, the average error 

distance of the positioning is 2.61m, the minimum error 

distance is 0.87m, and the maximum error distance is 3.76m. 

The probability of the error distance within 1m is 7%, the 

probability of the error distance within 2m is 31%, and the 

probability of the error distance within 3m is 76%. Compared to 

the FIFS positioning method, the positioning accuracy of the 

initial library is improved by 30.6%. 

 

5. CONCLUSIONS 

SWBN uses the spatial correlation of geomagnetism, divides the 

sub-fingerprint database through the reference point clustering 

algorithm of spectral clustering, and uses weighted back-

propagation neural network positioning algorithm to predict the 

weighted coordinates of objects. By deploying actual 

positioning environments and collecting geomagnetic data, 

constructing a geomagnetic reference map, and comparing it 

with some existing fingerprint positioning algorithms (Deep Fi, 

FIFS method) from different fingerprint perspectives. The 

experimental results show that SWBN can provide higher 

positioning precision and reduce training time. 

 

Although the positioning method proposed in this paper 

achieves better positioning accuracy, there are still several 

things to be improved in the future research work:  

 

(a) Resist the heterogeneity of hardware equipment and make 

full use of geomagnetic 3D information: 

 

As this paper analyses geomagnetic information in actual 

scenarios, it is found that the data information is very unstable. 

This may be related to the collection equipment, such as 

antenna differences or local clocks out of sync. 

Therefore, in the subsequent work, the differences in 

geomagnetic data collected by different equipment will be 

studied and processed, and effective data will be extracted to 

further enrich the position fingerprint to improve the positioning 

accuracy. 

 

(b) Study the algorithm of updating the fingerprint database: 

 

Since the positioning method proposed in this paper is based on 

the idea of deep learning and uses the deep neural network to 

tackle the positioning problem. When the fingerprint database is 

updated, the trained model can be further fine-tuned based on 

the idea of transfer learning. However, this paper does not 

perform actual verification. Therefore, in the subsequent work, 

experimental data is periodically collected, and the storage and 

update methods of the fingerprint database are studied in depth 

based on transfer learning. 
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