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ABSTRACT: 

 

Grey infrastructure is an integral part of the urban environment. Continuous modernization of architecture, construction, routes or 
services in that region leads to more and more new grey infrastructure appearing. The reason for this are constant migrations of people, 

dissemination of a healthy lifestyle or improvement of its level. Its growth is particularly noticeable in agglomerations where keeping 
the balance between sealed and vegetated area is very much concerned. Therefore, it is necessary to constantly monitor changes over 

time and thus update the databases containing information on land cover such as the Topographical Database. For this purpose VHR 
images were processed and analysed in terms of detection efficiency of topographical objects defined as grey infrastructure. This study 
presents the results of an analysis of the possibility of updating the land cover classes in the Topographical Database based on 
WorldView-2 satellite images. The methods used to detect grey infrastructure come from a machine learning approach such as Random 

Forests and parametric Maximum Likelihood classifier, resulting at a 90% level of accuracy. The other aim of the work was to analyse 

changes in the grey infrastructure on the basis of the Topographic Database at scale 1:10000 using a VHR satellite image.  The analysis 
of its changes was carried out on the dynamically developing city of Warsaw. 
 

1. INTRODUCTION 

Grey infrastructure includes all topographic objects that create 
impervious surfaces. These are: roads, pavements, parking, 

squares and buildings as well. Due to the variety of grey 

infrastructure objects, spatial data providing the accurate and 
detailed information is needed to perform such an analysis. VHR 
satellite images with GSD around 1 m are data that is sufficiently 
accurate to assess the current state of coverage by grey 

infrastructure objects. Figures 1, 2 and 3 show the changes in 

grey infrastructure as new buildings, squares or even roads still 
under construction (within yellow ellipses). Red lines or patches 
show grey infrastructure from the Topographical Database. 

 

 
Figure 1. High buildings in dense urban area (test site “U”), the 
new ones indicated within yellow circle. 
 

The goal of the research was to check the possibility of grey 

infrastructure detection in a VHR image using machine learning 
techniques and database updating. 
 

 
Figure 2. New road under construction. The red lines define 
objects in the Topographical Database. 
 

 
Figure 3. New buildings at residential area (test site “W”) in 

yellow lines, red patches – build-up area from Topographical 
Database. 
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1.1 Topographical Database (1:10000) 

The Topographical Database (TD) at scale 1:10000 contains 

groups of classes like: water, transport, buildings, land cover, 

land use, protected areas and administrative borders. TD is very 
useful for many purposes in spacial management, especially for 
creating cartographical products such as maps, visualizations, 

spatial analysis or 3D models. It is a national “GIS” product in 
Poland updated periodically from different sources (i.e. another 
databases) by national and local authorities. To support any 
decision concerning the local or regional area it must be up-to-

date. The updating process takes time and requires a lot of 
resources. Therefore any method to speed up the whole process 
is worth to consider and test.  The existing land cover database 
update methods are mainly based on aerial images 

photointerpretation and manual editing of objects. Supporting 
this process, even partially by indicating that new objects or 
places need to be revised, can significantly accelerate it. The most 

effective method seems to be automatic classification of VHR 

satellite images, whose spatial resolution (GSD) corresponds to 
the detail of the database at a scale of 1:10000. 

 
1.2 Classification algorithms 

Automatic and specially machine-learning classification has 
become a major focus of the remote-sensing literature by many 
reviewers (e.g. Belgiu and Drăguţ 2016; Maxwell et al., 2018). 
Machine-learning algorithms are generally able to model 

complex class signatures, can accept a variety of input predictor 
data, and do not make assumptions about the data distribution 
(i.e. are nonparametric). A wide range of studies have generally 

found that these methods tend to produce higher accuracy 

compared to traditional parametric classifiers, especially for 
complex data with a high-dimensional feature space (Maxwell et 
al., 2018).  
 

Many different studies indicate different classifier accuracy and 
it is difficult to select an effective method a priori. However, most 

of them point to Support Vector Machine (SVM), Random 
Forests (RF), and boosted Decision Trees (DT) generally as to be 

reliable classification methods (Maxwell, 2018). RF requires 
fewer training samples and is faster to implement. The main 
advantages are: quick classification, understandable operating 
procedure, simple final form of the classification trees, allowing 

easy classification of new objects and resistance to outliers. The 
RF algorithm uses two basic parameters: k - the number of trees 
and m - the number of rules that can be created in each tree to 
make a decision. By reducing the number of rules, each tree is 

less strong and the correlation between trees is weaker, which 
increases the accuracy of the model. Therefore, it is important to 
optimize the k and m parameters to reduce the errors (Rodriguez-
Galiano et al., 2012). 

 
On the other hand parametric classifiers such as Maximum 
Likelihood (ML) are still very popular in many remote sensing 
software and it works for classes with normal distribution. The 

ML algorithm calculates the probability of belonging to a given 

pixel for each class (sample). The pixel is assigned to the class 
for which the probability is the highest. This method gives good 
results when the training samples have a normal distribution, so 

they must be selected with great care. If the class is highly 
variable (i.e. grey infrastructure), this algorithm can classify with 
a commission (Adamczyk, Będkowski, 2007). Therefore two 
classifiers were used to test the grey infrastructure recognition 

and its accuracy: Maximum Likelihood (ML) and Random 
Forests (RF). Both algorithms belong to a supervised 
classification approach, which requires training samples.   

2. DATA AND METHODS 

2.1 Test sites 

The research area covered a part of Warsaw city (Poland) in two 

zones with varying degrees of urbanization. The first area is the 
highly urbanized Ursynów district with dense and compact 
buildings (named: "U"). There are a lot of tall multi-family 

buildings here (fig. 1). The second area is the Wilanów district 
(named: "W") of a more residential character with loose, low-rise 
buildings (Fig. 3). In both areas there are many new investments, 

such as family houses, new expressway (Fig. 2) and commercial 

or service buildings as well. Each site covered approximately 6 
km2.  
 

 
Figure 4. Test areas in Warsaw city (Poland): Wilanów district 
“W” and Ursynów district “U” 
 

2.2 Data sets 

For grey infrastructure detection a WorldView-2 image was used 
(fig. 4). This image is a collection of 8 multispectral bands with 
GSD=1,80 m, acquired on the 2nd of September 2018. This image 

was pre-processed using the Gram-Schmidt pan-sharpening 
method (Craig, Brower, 2000) resulting in 8-bands with 
GSD=0,40 m.  
 

In addition, a Topographical Database (TD) at scale 1:10000 was 
used to compare the results of the classification and to evaluate 
the accuracy. TD was older (2012) than the satellite image and 
the changes in infrastructure were noticeable (fig. 4). TD consists 

of different classes (features), but only part of them can 
determine the grey infrastructure. These classes are originally 

modelled as (fig. 5): 

• polygons: buildings, places and squares, area under 

railroads or airports; 

• lines: roads, pedestrian and bicycle paths, roundabouts.  
Therefore the lines features need to be converted into polygons 

using buffer processing to compare with the classification results. 
There were also independent sets of random points (for each test 

site elaborated independently) used to assess image classification 
accuracy.  

  

„W” 

 

 

„U” 
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Figure 5. Models of grey infrastructure features in TD: lines (e.g. 
roads) and polygons (e.g. buildings). 

 

2.3 Data processing and image classification 

The image data was processed using a common approach to 
multispectral classification workflow in a few steps: 1. training, 

2. calculation with classifiers and post-processing, 3. accuracy 
assessment, for both test sites separately.  
 

1. The training step included elaboration of training samples and 

signature analysis. A total of 44 training fields were identified, 
with an area of 13 m2, which is 0.2% of the total “W” area and 
50 training fields for “U” test area. They included grey 
infrastructure features such as: buildings, roads, pavements, etc. 

but also natural features like: water, vegetation or bare soil (fig. 
6). 

 

 
Figure 6. Training samples for image classification: buildings, 
roads, bare soils, vegetated area and water. 
 
The signature analysis was performed for both training sets, what 

led to merging or eliminating some of them. The signatures of 
grey infrastructure are quite similar to bare soil signatures  (fig. 

7), therefore, it might cause confusion between these two classes. 
The others were well separated and all of them have normal 

distribution. The average values of the standard deviation do not 
exceed 10 units, the minimum values fluctuate within 2-3 units, 
while the maximum values fluctuate to less than 20. The lowest 
values of the standard deviations can be observed in bands 2 and 

5, and the largest in band 7. 

 

 
Figure 7. Example of scatterogram for band 3 and 4 showing 

spectral distribution of the signatures: grey infrastructure (grey), 
bare soil (beige), vegetation (green), water (blue). 
 

2. In the classification step, two different classifiers: Maximum 
Likelihood (parametric) and Random Forests (non-parametric), 

were used to test and check the efficiency in grey infrastructure 
detection.  

 
The ML algorithm was performed in many variants using 

different values of reject f raction and a priori probability 
weighting. A reject fraction determines whether a cell will be 
classified based on its likelihood of being correctly assigned to 
one of the classes. A priori probability weighting specifies how a 

priori probabilities will be determined: “equal” — all classes will 

have the same a priori probability or “sample” — a priori 
probabilities will be proportional to the number of cells in each 
class relative to the total number of cells sampled in all classes. 

The best results were achieved for reject fraction equal to 0,1 and 
for probability weighting as “sample” for both test sites. Later, 
these results were used to compare with RF classification. 
 

Random Forests classification was also performed in many 
variants, testing different values like: the number of trees (k), the 
number of rules for each tree (m) and the number of samples to 
use for defining each class (s). Increasing the number of trees (k) 

usually leads to higher accuracy rates, although in this test there 
was no improvement. The best results were achieved for k=100 

and k=200. The maximum depth of each tree in the forest is 
another way of saying the number of rules (m) each tree is 

allowed to create to come to a decision. Trees with m=50 setting 
gave the optimum results. Increasing this number did not any 
better effects. The number of samples to use for defining each 
class (s) was tested as well, starting from 0 (all the samples from 

the training sites to train the classifier) to 1000 which is 

recommended for non-segmented images. Further increasing this 
number did not bring better results. After testing all RF variants, 
only two with the best results with k=100 and k=200 (m=50, 

s=1000) were taken to compare with ML. 
 
In the post-processing stage a majority filter was used to 

eliminate random individual pixels that appear within other land 

cover classes. This helped to clean up and partially homogenize 
the features which appeared in the images. Only single pixels 
were dissolved to make objects more uniform (fig. 8).  
 

  
Figure 8. Example of majority filter work. Changes indicted 

within yellow lines. 

 
After filtration, the aggregation of the classes into main groups 
was made. These classes represent the grey infrastructure like: 
buildings, roads and pavements, squares, but also natural green-

blue infrastructure like: grasslands, bushes, forests, water. 
 

3. RESULTS 

3.1 Classification results 

The final results allowed to compare both approaches ML and RF 
to grey infrastructure detection. Figure 9 shows the classified 
images for the “W” district using ML and RF (100 trees).  The 

classification results are described and exampled in detail in 

figures 10-11. 
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Figure 9. ML (left) and RF - 100 trees (right) results for “W” area. 
 

In figure 10 there are visualized buildings classified using ML 
algorithm (upper image) and using RF algorithm (down image). 

In ML images buildings appeared more homogenized and smooth 
while in RF images some parts of the buildings were classified as 

water (fig. 10-a) what was in fact a shadow (blue colour). On the 
other hand there are some buildings in ML images not detected 
at all, while in RF images the same buildings are recognized at 
least partially (fig. 10-b). The buildings detection is very 

dependent on spectral properties and similarities to road cover. 

Yet both classes belong to one group of grey infrastructure. 
 

 

 
Figure 10. Buildings obtained from ML (up) and RF (down) 
classification. 

 
The transport paths are recognized by both ML and RF methods 

with similar effect. It seems that in RF images the roads and 
pavements are more consistent and reliable (fig. 11-a). On the 

other hand in RF images there are more commission errors for 
roads in the grassland class (compare fig. 11-b).  

 

 

 
 Figure 11. Roads obtained from ML (up) and RF (down) 
classification. 

 
It seems that ML is more accurate for green cover while RF for 
grey infrastructure but the detailed accuracy assessment is 
required. 

 
3.2 Accuracy assessment 

For accuracy assessment a common practice is to randomly select 
hundreds of points and label their classification types by 

referencing reliable sources, such as field work and visual 

imagery interpretation. The reference points are then compared 
with the classification results at the same locations. In this 
research there were two independent sets of more than 1000 

control points for both test areas. The points were generated by a 
random sampling, using equalized-stratified approach. This 
method creates points that are randomly distributed within each 
class, where each class has the same number of points.  

 
The spatial distribution of classes was assessed using the 
methodology adopted from Congalton (Congalton, 2009). Based 
on observations an error matrix was generated and statistical 

parameters for particular classes were calculated: Producer’s 
Accuracy (PA), User’s Accuracy (UA) and the general 
parameters K - kappa and OA – overall accuracy (omega). The 
interpretation of these parameters and their usability is described 

in Congalton (Congalton, 2009) and Lillesand, Kiefer, Chipman 
(Lillesand et al., 2004). UA indicates the probability that a pixel 
classified into a given category actually represents that category 
on the ground. Hence it describes the possibility of correct class 

recognition in the field well. The Kappa value is a measure of 
agreement between classification and the reference data. Hence 
this measure is a good parameter to compare different 
classification results. Omega is a percentage of correctly 

a 
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b 
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classified pixels. This value is the most commonly reported 
accuracy assessment statistic and well describes the classification 

result itself. Therefore the best indicator of the classification 
quality for a particular class is UA and the best parameter for 

comparison of different classifications is Kappa.  
 

Tables 1-3 show the results for test area “W”, but similar results 
occurred at “U” test area. The ML classifier gave the best results 
in terms of overall accuracy  with kappa=0,75, while in RF kappa 
varies between  0,68-0,69 for the variants with 100 trees and 200 

trees respectively. The UA for roads is similar in each method 

and equals 0,69 for ML and 0,67 for RF (in both variants). The 
buildings are classified with the best accuracy and in ML images 
achieved UA=0,82, and in RF images: UA=0,71 (100) or 

UA=0,69 (200). The best classified class is water as a common 
and usual case, regardless of the method, with UA equal to or 
almost 1.  
 

The low vegetation class reached a UA value of 0,67-0,68 (RF 
classifier, tab. 2-3) and 0,85 (ML classifier, tab. 1). This kind of 
vegetation is mostly grasslands and is sometimes confused with 
bare soil (mainly at cultivated areas) or with medium vegetation 

which usually consists of small bushes or low crops. There is a 
confusion between roads and buildings. Especially buildings 

with asbestos or concrete roofs are classified as a road class. 
Nevertheless both belong to the same group of grey 

infrastructure. The problematic class is a bare soil which usually 
appears at natural or agricultural areas, but sometimes also occurs 
as undeveloped land in build-up areas. It reached the poorest 
results in every method. 

 

References/control areas 

Class  water roads bare 

soil 

low 

veg. 

medium 

veg. 

buildings high 

veg. 

UA 

water 143 0 0 0 0 0 0 1,00 

roads 3 99 5 1 0 35 0 0,69 

bare soil 0 4 86 14 0 39 0 0,60 

low veg. 0 9 1 121 3 5 4 0,85 

medium 

veg. 

0 1 0 32 93 1 16 0,65 

buildings 0 14 4 4 0 117 4 0,82 

high veg. 1 1 0 4 5 1 131 0,92 

PA 0,97 0,77 0,90 0,69 0,92 0,59 0,85   

Kappa 0,75           Omega  0,79 

Table 1. Maximum Likelihood classification results for “W” area 
 

 

References/control areas 

Class water roads bare 
soil 

low 
veg. 

medium 
veg. 

buildings high 
veg. 

UA 

water 145 2 0 0 1 3 1 0,95 

roads 0 81 5 4 0 31 0 0,67 

bare soil 0 3 57 4 0 33 0 0,59 

low veg. 0 10 30 138 8 17 4 0,67 

medium 

veg. 

0 1 0 12 78 1 11 0,76 

buildings 0 29 4 5 0 96 1 0,71 

high veg. 2 2 0 13 14 17 138 0,74 

PA 0,99 0,63 0,59 0,78 0,77 0,48 0,89   

Kappa 0,69           Omega 0,73 

Table 2. Random Forests (100) classification results for “W” area 
 

 

References/control areas 

Class water roads bare 
soil 

low 
veg. 

medium 
veg. 

buildings high 
veg. 

UA 

water 145 2 0 0 1 5 1 0,94 

roads 0 82 5 4 0 31 0 0,67 

bare soil 0 2 68 10 0 34 0 0,60 

low veg. 0 12 19 127 9 14 6 0,68 

medium 

veg. 

0 1 0 9 73 1 11 0,77 

buildings 0 27 4 12 0 99 1 0,69 

high veg. 2 2 0 14 18 14 136 0,73 

PA 0,99 0,64 0,71 0,72 0,72 0,50 0,88   

Kappa 0,68           Omega 0,73 

Table 3. Random Forests (200) classification results for “W” area 
 

The evaluation for grey infrastructure detection was performed 
for the aggregated classes as well. Overall accuracy for ML 

classification (table 4) was 87% for dense build-up area (“U”) 
and 92% for residential area (“W”). RF classification was also 
performed for “W” test site and resulted in a accuracy level of 
89% for k=100 trees and 88% for k=200 trees (table 5). Other 

errors were calculated and are shown in tables 4 and 5. A 

commission error (CE) is the share of reference pixels in that 
class that have been “omitted’ in the classification image. An 
omission error (OE) is the percentage of class pixels in the 

classification image which are falsely classified. 
 
ML classification resulted slightly worst for the dense urban area 

“U” (omega=87%) than for the loose urban area “W” 

(omega=92%). This is because at densely built-up areas a lot of 
deep shadows from high buildings appear and confuse the 
classes. For the same reason the commission error is lower at 
“W” area (7%), however the omission error is higher due to many 

small family houses covered by the neighbouring trees. 
 

Grey infrastructure 
ML  

 “U” test site 
ML  

 “W” test site 

Omission Error 13% 19% 

Commission Error 11% 7% 

Overall accuracy 87% 92% 

Kappa 0,85 0,86 

Table 4. Maximum Likelihood classification of grey 
infrastructure accuracies. 

 

Grey infrastructure 
RF (100) 

“W” test site 
RF (200) 

“W” test site 

Omission Error 27% 27% 

Commission Error 7% 10% 

Overall accuracy 89% 88% 

Kappa 0,81 0,80 

Table 5. Random Forests classification of grey infrastructure 
accuracies for “W” test site. 
 

There is no noticeable difference in accuracy levels for the RF 
classifier in two variants. RF with k=200 reached slightly lower 
results (omega=88%) compared to RF with k=100 
(omega=89%). Both variants showed a quite high omission error 

(27%) while commission error was slightly better for RF (100) 

reaching 7% (table 5). It seems there is no need to use more trees-
complex variant. Therefore RF with k=100 trees would be 
recommended as more efficient or ML otherwise. 
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Since built-up area is a very complex, mixed-class and detailed 
terrain, the achieved accuracy is satisfying. Both methods – ML 

and likewise RF, can be used to indicate the update needs in 
Topographical Database. 

 
4. DISCUSSION AND CONCLUSSIONS 

The results of this research proved the high quality of grey 
infrastructure features detection. The other studies show similar 
effects in impervious surfaces detection. Results of Zhang’s work 
based on 1-m multispectral aerial images indicate a separation of 

impervious surfaces from barren land, vegetation, and water, 
with user’s accuracies ranging from 69% to 90% and producer’s 
accuracies from 88% to 95% (Zhang et al., 2020). The other study 
on land cover classification was performed for the West Virginia 

using GEOBIA and RF machine learning on orthophotography 
(Maxwell et al, 2019). The best classification accuracy obtained 
was 96.7% (Kappa = 0.886). Forests, low vegetation, and water 

were mapped with user’s and producer’s accuracies above 85%. 

In contrast, the impervious and mixed developed classes were 
more difficult to map reaching 80% of PA (Maxwell et al, 2019). 

The fast expansion of satellite and aerial imagery resources is 
outpacing the capacity of conventional effort of collecting ground 

truth through field surveys or on-screen digitalization (Zhang et 

al., 2020). This automatic manner significantly reduces the effort 
of visual interpretation especially where the databases cross-
check is not available. 

 
4.1 Database updating in grey infrastructure 

To check the possibility of updating, the Topographical Database 

at scale 1:10000 with status for 2012 was used. Comparison with 

classification results (fig. 13 and fig. 14) showed the needs in 
editing and insertion of the new features. Figure 12 presents 
residential area “W” where 112 new buildings were detected out 
of around 1300 total which gives 9% objects to update. There are 

also 10 new roads compared to 380 roads in total which gives 5% 
in total length.  

 

 
Figure 12. Classes presenting grey infrastructure according to TD 

class names and the indication of places to update (blue and green 
lines). Land cover classes are: PTZB – build-up area, PTKM – 
transport area, PTWP – water area. 

 

The figure 13 presents dense build-up area “U” with 10 new 
features. Since this area is already very much developed there are 

rather new constructions as roads or squares rather than buildings 
or houses. Nevertheless a new grey infrastructure area of almost 

0,5km2arises in a total of 5km2 in test “U” site. The main reason 
is the new long expressway investment. 

 

 
Figure 13. Comparison of grey infrastructure from classification 
and from Topographical Database. Yellow lines indicate the new 

constructions. 

 
The precision and detail of this Database at scale 1:10000 
requires the exact vertices of feature polygons (i.e. buildings) or 

feature lines (i.e. roads). Therefore the detected new objects can 
be pointed out and flagged to input as a new feature by manual 
editing. The other way to use the output from the classification is 
to compare and check with land cover classes existing within this 

Database as shown in figure 12. Land cover classes like: PTZB – 
build-up area, PTKM – transport area, PTWP – water area, 
represent the surface with dominant features, but not exact object 
borders. Still the automatic process of updating requires more 

investigation. 
 

4.2 Conclusions 

This research showed the potential of grey infrastructure 

detection using VHR imagery. Based on multispectral properties 
the supervised classification reached a level of 92% of overall 
accuracy with kappa=0,86. The best producer’s accuracy for 
building was 0,82 and for roads – 0,69. In dense built-up site the 

results were slightly worse due to the shadow and close 
constructions, than in residential areas with spread out buildings.  
 
The introduced and tested fast method of grey infrastructure 

detection based on ML or RF can be an alternative to very much 
elaborative Artificial Neural Networks or other classifiers 
demanding a lot of training samples or object-based more 

complex approaches. However, the contextual information could 

support better distinguishing and separating buildings and roads 
from each other. This would effectively support the process of 

entering class features into the database.  
 

There are also some additional questions that should be explored 

in order to further use VHR data to map large extents. There is a 
need to explore the automatic obtaining of the training data and 
models produced in one location to map other areas. The other 

Grey inf. TD (2012)  

Grey inf. from ML classification (2018) 
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issue is to elaborate the automatic process of database updating 
without manual intervention. For now it seems that flagging 

places is very limited   and will not guarantee the exact outline of 
the features. Yet, both processes could speed up the obtaining of 

the information about grey infrastructure. 
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TD – Topographical Database 
VHR – Very High Resolution 
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