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ABSTRACT: 

 

Powerline infrastructure provides the backbone for the electricity supply of industrial, administrative and private sectors. Its 

maintenance requires regular inspections, that are still largely carried out manually. In this work, we propose an automated 

inspection system instead. We review current inspection processes as a baseline, give an overview of relevant inspection criteria, 

propose a suitable multi-modal sensor system, and discuss methods to automate the inspection tasks. In our system, we particularly 

focus on the high-level organization of the sensor data and inspection results to form a Digital Twin of the power line, that allows 

operators to browse through the recorded data in a meaningful way and review the status of their powerline from the desk. 

 

 

 
*  Corresponding author 

 

1. INTRODUCTION 

Currently inspection of powerlines is done mostly in aerial 

missions, capturing data with Lidar, RGB cameras as well as 

specific thermal infrared and UV sensitive sensors. During 

flights, findings are reported by visual observation and later 

analyzed and verified using the captured data. Typically, the 

inspection personnel only operate one or two sensor modalities 

per flight, and additional missions must be planned for the other 

modalities. In this paper, we instead propose to integrate all 

sensors into a single multi spectral system, such that fewer 

overall flights are required. The combined multisensor system 

along with novel analysis methods based on deep learning 

allows us to integrate all observations in order to create a 

Digital Twin of the powerline infrastructure representing its 

current state. The sheer volume of the captured data mandates 

an automated analysis, which at the same time reduces the need 

for subjective human interpretation of the images and provides 

reproducible results. 

 

We will give an in-depth review of the state-of-the-art in 

powerline inspection and management in Section 2., and our 

proposed system covers the whole range of inspection criteria 

from the current best practice. We therefore also rely on the 

whole range of established sensor modalities for powerline 

inspection. Vegetation distance and right-of-way violations are 

handled using 3D Lidar data. Components mounted on the 

infrastructure such as insulators are detected, localized and 

inspected based on high resolution RGB images. Thermal 

signatures of various components such as clamps are further 

analyzed using thermal infrared sensors. Finally, corona 

discharges occurring along the high voltage powerlines are 

found using a dedicated UV sensor. 

 

A new sensor head for mounting on a helicopter was developed 

to cover all these inspection criteria and is going to be presented 

in detail in Section 3. It includes a Lidar scanner that is 

recording point-clouds with more than 300 pt/m², five 100 MP 

RGB cameras providing object resolutions of 2mm and 

coverage of all components from various viewpoints, four 

640x512 thermal infrared sensors measuring temperature 

profiles along the powerline, and a UV sensitive camera 

recording corona discharges at 50Hz. Additionally, a high-grade 

GNSS-INS unit is used for precise georeferencing of all 

recorded data and a thorough sensor calibration is performed 

on-the-fly. For safety of the inspection flight, the entire sensor 

head is designed to operate at a distance of 40m away from the 

powerline infrastructure. Flying with 30 km/h this setup enables 

us to survey 100 km power line a day, recording 10s of 

terabytes of raw data along the way. 

 

The analysis of this data and generation of the Digital Twin are 

performed offline using methods we will present in Section 4. 

As a first critical step, a semantic segmentation of the 3D point 

cloud is computed such as to identify and separate the relevant 

foreground regions like conductors, insulators and pylons from 

the background such as terrain and vegetation. Based on 2D 

bounding box detections in the RGB images, relevant 

components such as insulators and clamps are identified and, 

with the help of the 3D data, also localized in space, thus 

forming the backbone of our digital powerline model. For 

individual components, appropriate inspection tasks are then 

carried out to identify e.g. chippings on insulators or 

temperature increases along clamps. In parallel, suspicious 

signatures in the images from the UV sensor are identified and 

clustered in space and can later be associated with the identified 

components. At all stages of the analysis, the methods heavily 

rely on machine learning and in particular deep learning 

techniques. These are driven by training data and can evolve 

further to adapt to novel, previously unseen data during long 

term operation of the overall system. 

 

We will present an outlook on further improvements of our 

system, as well as on the use of the gathered data in Section 5. 

For example, we aim at reducing the weight, size and power 

consumption of the sensor-head in order to get it mounted on an 

autonomous long-range UAS. In parallel, the learning-based 
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analysis methods will be extended such as to establish a lifelong 

learning process that can adapt to new data efficiently. 

 

2. STATE OF TECHNOLOGY 

Today, the monitoring of powerlines is commonly performed 

using helicopters while flying above or besides the lines 

(CIGRE, 2017). Visual inspection by an observer is common 

practice and, depending on the observer’s experience, achieves 

relatively good results. Besides that, the use of various 

assistance systems in order to detect additional findings as well 

as to map the power-line for geometric verification and 

documentation are available: The use of Lidar systems to get 

geometric data of the power-line also helps to detect the 

clearance between conductors and vegetation, which is hard to 

measure otherwise. Cameras are mostly used for the creation of 

an orthophoto, to document the findings and to assist in the 

interpretation of the Lidar point cloud. Thermal cameras help to 

detect invisible issues and UV cameras are used to detect 

anomalies along the conductors and insulators. 

 

The list of typical inspection criteria is long, varies from 

country to country or even from operator to operator, and 

sometimes very specific inspection reports are generated on 

customer request (CIGRE, 2017). A first kind of common 

inspection criteria focuses on the right of way, such as clearance 

between conductors and vegetation, illegal construction 

underneath the powerlines as well as erosion or other terrain 

changes in the corridor. A second group of criteria focuses on 

the pylon structures, monitoring e.g. bent or missing metal bars 

within grid structures, woodpecker damage to wooden support 

structures, missing warning signs etc. The third major aspect 

covers damages to the conductor wires such as individual 

broken strands of wire, that are sometimes sticking out, 

damages due to flashover as well as bird-caging. Frequently 

such damages are caused by components mounted on the 

powerline, and condition monitoring of such components 

defines the fourth major category of inspection criteria, 

covering e.g. insulators, vibration dampers, spacers, clamps, 

aerial markers and bird protection elements. Many criteria can 

be covered by visual inspection in the RGB domain, but 

additional, well established sensor modalities include Lidar 

sensors for right of way monitoring (Jwa et al., 2009), 

measurement of thermal hot spots particularly along clamps, 

and detection of partial discharges along high voltage power 

lines by UV monitoring, that can hint at a range of problems. A 

clear and simple one-to-one assignment even just of sensor 

modalities to inspection criteria is often not possible, as e.g. 

certain types of insulators are susceptible to damages, that show 

up in the UV domain, while other types of insulators are not 

(CIGRE, 2017). In the present work, we instead focus on more 

general principles and on organizing the inspection information 

in the form of a digital twin. 

 

The sensor setups of systems frequently used in powerline 

inspection produce Lidar point clouds with densities of 30-60 

pt/m² of first and last echo Lidar data and image resolutions of 

RGB imagery with 1-2 cm GSD in nadir view and 0.5-10 cm in 

oblique view. Thermal cameras typically achieve resolutions of 

5-10 cm GSD (Pless et al. 2012, GGS GmbH, 2019). For UV 

inspections, viewfinders with 50Hz live images are typically 

used and once a defect has been identified, the RGB images are 

used for documentation. 

 

Findings on the powerline and its components are usually 

directly inspected by trained personnel, others such as 

vegetation clearances are analyzed in the Lidar data. Lidar 

processing follows the typical processing pipelines using 

GNSS-INS for direct referencing, point cloud extraction and 

analysis (first/last echo). Distance analysis is common practice 

in many software systems. The data of the thermal camera is 

sometimes used as an overlay on the lidar and image data to 

identify additional findings or to confirm visually observed 

issues. The image data is processed besides the Lidar GNSS-

INS processing to overlay color information to the point-cloud, 

to create an orthophoto as a map basis for the report, and most 

importantly for documentation of reported defects. 

 

The report for the powerline operator is generated out of this 

data semi manually by joining observed and extracted findings 

in combination with the multi sensor data. The asset 

management, relating inspections reports to previous findings 

and long-term condition monitoring remain in the scope of 

power line operators, and each operator has their own 

established practice for such tasks. While support systems are in 

use at some operators, others rely on old paper plans and 

engineering drawings created when the powerlines were built, 

and information inevitably gets lost, once individual power lines 

are transferred between operators. There are no established 

digital twin models that are accepted as industry wide standard 

representations for life cycle management of powerlines. 

 

3. MULTI-MODAL SENSOR SYSTEM 

3.1 Sensor-head requirements 

In order to fulfill the requirements for AI based finding 

detection, we aim to maximize the resolution and accuracy of 

the entire sensor setup and significantly increase them relative 

to the common technology. Higher image resolution, better 

point density, better reproduction of the pylons within the Lidar 

data and many more aspects will reduce the required effort to 

get the algorithms working and train the system for automated 

finding detection on the digital twin.  

 

The entire sensor setup has to be calibrated in order to skip on-

the-job calibration as much as possible, such that an entire 

photogrammetric preprocessing process can be omitted. Direct 

referencing is required, and the sensors have to be calibrated for 

the intrinsic parameters and the sensor to sensor and sensor to 

IMU relation. GNSS INS is needed in order to provide highly 

accurate position and attitude information in cm accuracy for 

georeferencing the relevant sensor data. 

 

The length of the power line to be observed on a daily mission 

should be 100 km, flown on both sides to capture data with all 

relevant perspectives in order to have a full inventory of the 

elements (Birchbauer et al. 2018).  

 

The requirement for Lidar is an average of 150 pt/m² in a single 

flight pass, which for the combined forward and backward 

missions on both sides results in about 300 pt/m² on the line 

itself. Thus, the geometric determination of the pylons, the 

conductors and the infrastructure are guaranteed and can be 

used as a basis for the adjustment of all other sensor data. Such 

high resolutions also allow to identify and localize individual 

components such as insulators in the 3D data. 

 

The resolution of the cameras should be at 2 mm GSD on the 

power line to identify small chippings and cracks on the 

components and for the orthophotos about 1 cm GSD on the 

ground is required in the nadir view. The camera must be able 

to use a very short exposure time to avoid forward motion 

blurring. To detect issues in an automated way, the system 
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needs a comparable resolution to a human observer and also 

different views and redundancy to prevent a high rate of miss 

matches. Typical defects need to be visible in a 3x3 pixel matrix 

for reliable detection with automatic methods, resulting in 6x6 

mm patterns on the object surface that can be spotted reliably. 

 

The thermal resolution is defined to achieve at least 10 mm 

GSD in order to be able to resolve anomalies on the conductors 

and clamps. Such a high resolution is required to have at least 

one or ideally more pixels that represent only the conductor or 

clamp, without being influenced by the background. Additional 

challenges for thermal inspection are the low resolution of 

imaging sensors for thermal cameras (usually 640x512 pixels or 

lower) and the effects of material properties, that overlay the 

thermal emission.  

 

Partial electrical discharges on the powerline are indicators for 

sudden changes in the electrical field, which occur e.g. at pointy 

objects or sharp edges. Such discharges create electromagnetic 

noise and emit photon swarms or flashes in the ultraviolet 

spectrum. Cameras sensitive in this band can capture images 

and help to identify the place and intensity of the finding. The 

detection of discharges requires a fast capture rate since 

discharges are linked to the frequency of the alternating current. 

Daylight is a problem for the camera to identify the small 

discharge radiation from normal solar radiation in the upper 

ultraviolet spectrum. Therefore, a daylight filter has to be used 

in combination with an amplified sensor to detect the small 

number of photons in the remaining spectrum, that are emitted 

by a discharge.  

 

Data storage is a big task and the synchronization of the sensors 

to get all data properly georeferenced is a key issue in the entire 

setup. Fast data storage, several terabytes of raw data have to be 

saved in real-time together with exact timestamps based on 

GNSS-INS in order to have a very precise timing on all data.  

 

For mission planning, a terrain model and information about the 

pylon coordinates, heights and design are needed to calculate 

the best flight trajectory for the pilot. Besides that, the optimal 

trigger points for the cameras must be calculated and if needed a 

setup of angles and orientation of the sensors to achieve the best 

representation of the infrastructure to generate a perfect digital 

twin. Limitations are predefined by the powerline operator e.g. 

minimal safety distance, minimum height above ground and 

others. In most cases a distance of at least 40 m has to be 

maintained. 

 

To assist the pilot in steering the helicopter exactly on the 

planned trajectory, an FMS is needed with all information about 

track, position and speed to be followed up. 

 

3.2 Sensor Configuration 

Based on these requirements, the different sensors have to be 

selected, configured and integrated into a multi sensor head. To 

be flexible, the single sensors were mounted in special brackets 

to rotate and tilt the sensors for test-evaluation for the best 

parameters. 

 

The Riegl VUX LR was chosen as Lidar system in order to have 

a high pulse repetition and scan rate. The long-range version has 

a stronger laser beam that enables a better echo from the 

conductor itself. The laser scanner can be tilted and rotated in 

order to better intersect the pylon and achieve a higher point 

density inside it while flying parallel to the corridor. With 

suitable tilt and rotation, we achieve average point density of 

150pt/m² and more per flight direction. The synchronization for 

the final calibration process is managed via NMEA connection 

to the GPS Receiver and a PPT synchronization signal. 

 

The camera setup is based on five PhaseOne iXU1000 cameras. 

CMOS sensors guarantee low noise even under difficult light 

conditions. A shutter speed of 1/2000 predicted forward motion 

effects and the central leaf shutter enabled also precise image 

processing. To record the entire pylon in 1.5-2.5 mm GSD, two 

forward looking oblique cameras have been combined, using 

90mm and 110mm lenses. The same configuration was used for 

a second, backward looking row of sensors. For creating 

orthophotos, a nadir camera with 50mm lens was mounted 

alongside the other cameras. All cameras are triggered in a 

daisy chain configuration and manage a capture interval of 0.7 

seconds. The daisy chain of the cameras results in perfect 

synchronization and the common event signal is stored in the 

GNSS receiver as well as the GNSS timestamp and position in 

the exif data header and the exif log. 

 

A stable mounting between the IMU and sensors is key for 

accurate referencing. For the Lidar scanner, the lever arms 

between the sensor nodal point and the IMU center must be 

calibrated by measurements and the bore side angle adjusted 

with calibration data out of a test mission. The calibration of the 

cameras needs the steps, the internal calibration of focal length, 

pps and radial distortion and the measurement of the lever arms 

between the entrance pupil of the lenses and the IMU center. 

The bore side angles can be calibrated out of test missions with 

a sufficient number of GCPs. For the calibration a normal 

photogrammetric workflow with tie-point matching and bundle 

block adjustment is use. 

 

In order to achieve thermal data with an GSD of 10-25 mm, a 

set of four microbolometer cameras (Flir A65) with 50 mm 

lenses have been integrated. A fan of these cameras captures the 

entire pylon and all conductors. The cameras were oriented 

forward oblique to get like the RGB camera a good view of the 

 

Figure 1. Rendered CAD model of the mountings 

 

Figure 2. Sensor-head mounted on a helicopter. 
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pylons. The setup of the thermal cameras is synchronized with 

the GPS signal and achieves an exact timestamp for each image. 

To build up a camera detecting corona discharges, a Proxivision 

UV sensor with an amplified sensor back and daylight filter was 

selected. In addition, an RGB camera was mounted as a hook up 

in same view and co registered to display the discharge effects 

on the visible bands for a better recognition in the other data 

(Lidar, RGB and thermal). The gain control defines the 

sensitivity of the UV camera. In order to keep track with the 

alternating current, both cameras (UV and VIS) run in 50 Hz 

capture mode with synchronized data handling on the GPS 

timestamp. 

 

The employed GNSS-INS is the L1/L2 dual antenna system 

NovAtel Span with a FOG IMU. This device builds the central 

navigation and georeferencing system for all sensors. 

 

The mission planning was done with a specially developed tool 

in order to fly "snake-lines" and to capture with respect of the 

flight path the powerline in an optimal way. Input parameters 

are the coordinates of the pylons, their height, the pylon 

geometry, extraction of the conductors and insulators as the 

most important feature and predefined regulations and sensor 

parameters. The result is an optimal flight path and setting of 

the sensor rotation and tilt angles. 

 

The Flight Management System was an adjusted version of 

AeroTopoL with instruments that guide the pilot exactly on 

track and indicates speed (35 km/h is absolute maximum) 

distance to next curve and others. A moving map in the 

background assists the operator for flight assistance and 

forecasting specific track issues. 

 

3.3 Calibration 

In order to analyze the data in the most rapid and smooth way, 

direct referencing of the data without intensive 

photogrammetric processing forces a proper calibration of the 

system. The Lidar data fully relies on GNSS-INS and cannot be 

processed without a well synchronized exact trajectory. There 

are two sets of lever arms to be measured and fine calibrated. 

The lever arm from the GNSS-antenna center to the IMU center 

is typically measured using a total station on the ground. It is 

important to have the coordinate system of the IMU well 

defined and measured in sub-cm accuracy. 

 

The same procedure can be applied to the thermal cameras since 

they show image information that represent the structure. More 

difficult is the calibration of the corona camera. The most 

suitable way is to co-register the UV-camera to the monitoring 

vis-camera. That way we can receive a standard affine 

adjustment of the UV-data to the vis camera which itself can be 

processed in normal workflow as described before. The way we 

performed calibration was the use of the UV camera without 

daylightfilter to get visible matching points between the two 

sensors. The better but far more laborious way is to use UV 

targets in an indoor environment.  

 

The stability of the calibration is assumed to be good enough as 

long as all sensors and mountings are kept together. All sensors 

are robustly mounted on a stable frame that does not show 

deformations bigger than the resolution of the IMU can 

measure. 

 

4. ANALYSIS AND DIGITAL TWIN 

Due to the amount of data recorded with our sensorhead, 

automatic analysis methods are mandatory to handle inspections 

efficiently. We consolidate the results of these automatic 

methods in a digital twin representation, that we create along 

the way. As a first step we compute a semantic segmentation of 

the 3D point cloud from the Lidar scanner, as we will describe 

in detail in Section 4.1. We also run a 2D object detector on all 

RGB images recorded with the cameras. The detected 2D 

bounding boxes are then combined with the semantically 

segmented 3D point cloud to create an inventory of components 

along the power line, which serves as the backbone of our 

digital twin of the infrastructure. These steps are discussed in 

Section 4.2. While our digital twin representation is therefore 

simplistic, it is already a very powerful way to deal with 

inspection results, as we will also show in this chapter. 

 

We present details on three selected inspection criteria, that 

cover different powerline components and make use of different 

modalities provided by our sensorhead, but at the same time 

they serve as blueprints for three different paradigms of 

organizing information with the help of our digital twin. In 

Section 4.3 we present details of an insulator inspection module 

using the RGB imagery as an example of using the digital twin 

representation to correlate and consolidate information, that is 

already contained in the model. This is followed by a clamp 

inspection module based on thermal IR information in Section 

4.4, which serves as an example for triggering targeted 

inspection routines based on the digital twin information. 

Additional we employ a UV inspection module that we present 

in Section 4.5 and which serves as a blueprint for integrating 

unspecific 3D inspection results into our digital twin 

representation to enrich the specificity of the methods. 

 

An outline of the relations between the individual modules is 

shown in Figure 5, which also illustrates the information flow in 

a practical implementation of the presented analysis methods. 

 

Figure 3. Schematic workflow of the mission planning. 

 

Figure 4. Pilot Screen with Navigation instruments 
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4.1 Semantic Segmentation 

The first step of our processing pipeline aims at automatically 

classifying all the 3D points recorded with the Lidar scanner. 

Such semantic segmentation in 3D is a classical problem in 

geosciences (Weinmann et al., 2015). In our case the main goal 

is to identify relevant parts of the infrastructures like pylons, 

conductors and insulators, and separate them from the ground, 

vegetation and buildings. This information is of direct use for 

infrastructure operators, allowing them to assess vegetation 

encroachment (Ituen et al., 2008) construction activities and 

other issues related to their right of way. Apart from that, the 

information is also used as a first part of our digital twin 

representation, which for many cases allows us to restrict the 

attention of the later inspection modules to the relevant parts. 

 

To compute the semantic segmentation, our implementation 

uses a classical feature-based approach as known from e.g. 

(Weinmann et al., 2015). Our feature vector comprises of Lidar 

attributes such as echo number and intensity as well as 

moments, densities and rank order statistics computed in 

spherical and cylindrical neighborhoods and uses multiple 

search radii comparable to (Hackel et al., 2016). After this 

feature vector is computed for each point, they are passed 

through a relatively simple neuronal network with 6 hidden 

layers for classification. Finally, we use the mean field 

approximation (Krähenbühl, Koltun, 2013) of a dense 

Conditional Random Field as regularization to remove 

individual outliers and misclassifications. This overall pipeline 

can also be replaced with alternative approaches such as deep 

segmentation networks (Qi et al. 2017), that are trained in a 

fully data-driven end-to-end fashion. 

 

4.2 Object Detection and Inventorization 

Small components such as individual insulators, vibration 

dampers, spacers and individual clamps are hard or even 

impossible to detect purely from 3D point cloud data. We can 

use the RGB images provided by our sensorhead to identify 

them in 2D, but these individual 2D views are often insufficient 

to analyze their condition. For example, a chipping on a 

ceramic insulator seen in a single image might be on the 

occluded, far side of the component, that is only clearly visible 

from a different perspective. Our sensorhead therefore records 

multiple redundant views of each component, and in our digital 

twin representation we relate these views to each other as well 

as to the 3D point cloud in order to get a complete view of the 

components. This allows an automatic inspection method to 

exploit the multiple viewpoints and an operator to browse 

through the multiple images of each component in order to 

assess potential damages with higher confidence. The data 

structure representing components is the second major part in 

our digital twin representation. 

 

To localize and identify the components in the 2D images, we 

employ deep learning based 2D object detection methods from 

the computer vision community. In particular, the SSD meta-

architecture (Liu et al., 2016) with a ResNet backbone (He et 

al., 2016) appears to provide a reasonable tradeoff between 

accuracy and runtime, although alternatives can be considered 

as a drop-in replacement in our pipeline. In any case, the 

accurate calibration of the sensorhead provides the necessary 

geo-referencing of individual 2D images to relate the detections 

to each other and to the semantically segmented 3D point cloud. 

We achieve this by backprojecting the 2D bounding boxes onto 

the point cloud and intersecting and clustering the results 

(Birchbauer et al., 2020a). During this consolidation we can at 

the same time remove spurious false detections, that are not 

confirmed at the corresponding locations in other images, and 

promote low-confidence detections, that are confirmed by 

multiple other views. In our experience, both of these steps 

dramatically improve the detection accuracy, resulting in overall 

precision and recall values beyond 99% and localization 

accuracies around 10cm in 3D space for the components on a 

typical powerline. 

 

After this inventorization stage, our digital twin model consists 

of the semantically segmented 3D point cloud along with 3D 

locations of detected components, where each component 

comes with a list of images and respective 2D locations 

showing it in high detail. This is also illustrated in Figure 6. 

 Figure 5. Overview information flow for the analysis steps.  

 

 

Figure 6. Sample of the digital twin representation showing a 

semantically segmented 3D point cloud of the infrastructure, 

detected components and sample images of these components. 
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This consolidation dramatically simplifies the inspection task by 

removing irrelevant background data and highlighting the 

critical infrastructure components, but due to the number of 

components on a typical power line, manual inspection is still 

prohibitive. For example, there are easily tens to hundreds of 

insulators in a single pylon, and there are pylons approximately 

every 300m in powerlines that are running for hundreds or 

thousands of kilometers. We therefore apply a range of targeted 

and highly specific automatic inspection methods to the 

individual components in our representation. A complete list of 

these ever-expanding inspection criteria is beyond the scope of 

this paper, and we restrict our attention to three select samples 

in the following. 

 

4.3 Insulator Inspection 

Insulators are a particularly critical component in powerline 

infrastructure. On the one hand they provide electrical 

insulation, but at the same time they have to support the weight 

of the conductors between the pylons. Typical damages to e.g. 

ceramic insulators are chippings along the surface, caused e.g. 

by hailstorms, or heavy contaminations, as illustrated in Figure 

7. Such damages are typically detected by visual inspection with 

suitably trained personnel, and in our automatic system we 

analogously use high resolution RGB images with a trained 2D 

image classifier. 

 

In our implementation, we exploit the consolidated detections in 

our digital twin representation. This allows us to take crops of 

the RGB images around the detected insulators and pass them 

through a deep learning-based classification network. Various 

network architectures have been presented in the computer 

vision literature (He et al., 2016) and they again provide a 

tradeoff between accuracy and runtime, but in practice our 

digital twin representation with the consolidated list of 

components and images already leads to a significant reduction 

in runtime, allowing us to focus very much on accuracy. We 

therefore use relatively complex and deep network 

architectures, and currently base our classifier on a ResNet101 

architecture (He et al., 2016), which already achieves 96% 

accuracy for classification of the relevant damages in individual 

2D insulator images. 

 

When combining the individual 2D image classification results 

to a single assessment of each component, this can be further 

improved, but care has to be taken on the exact way of 

combining the information. Simple majority voting ignores the 

fact that typical defects will only be visible on one side of the 

insulator. Obviously, this induces a tradeoff between sensitivity 

and specificity, and we currently report a defect if more than 

10% of the views on an insulator are classified as damaged. 

 

4.4 Clamp Inspection 

Connections within high voltage power lines are typically 

achieved with screwed or pressed clamps. Due to loosening of 

bolts, internal corrosion or other defects, the connection quality 

can be weakened, which typically leads to clamps and wires 

heating up under load. The connection quality can therefore be 

assessed by measurements in the thermal infrared spectrum, and 

our sensorhead contains appropriate cameras to take these 

measurements. 

 

In our system, we can again rely on the detected and 

inventorized list of clamps observed in the RGB images, as 

described in Section 4.2 and illustrated in Figure 8. Thanks to 

the consolidated component list in our digital twin, we can 

project the corresponding 3D positions into the thermal IR 

images and extract crops from there for further analysis, which 

dramatically reduces the search space to the relevant image 

areas. Such a cross-modal approach is particularly important, as 

it is almost impossible to detect clamps in thermal images alone, 

as exemplified by the sample images in Figure 8. However, the 

measured thermal signatures depend on many variables such as 

the surface condition and the current load of the power line, but 

also ambient temperature, wind velocity, sky as well as solar 

radiation and cloud coverage. Additionally, the relative velocity 

and distance to the powerlines affects the measurements. 

Further details on the thermal inspection module developed in 

our system are presented in (Komar et al., 2019). 

 

4.5 UV Defect Detection 

Particularly in high voltage power lines beyond 110kV, partial 

discharges may occur at places of strong electric field changes, 

which is typically at sharp edges or corners. Such partial 

discharges may hint at broken or damaged equipment along the 

powerline, but also the ionization of air resulting from such 

discharges may accelerate corrosion and cause further damage. 

We therefore aim at detecting so called corona discharges using 

a UV sensitive camera. The images from this camera typically 

show bright, white blobs whenever a discharge is detected and 

if multiple of these discharges are observed in a consistent 3D 

 

Figure 7. Sample images of insulators with defects and surface contaminations.  

 
 

 
Figure 8. Sample of thermal inspection of clamps. 
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location, this hints at a problem on the power line infrastructure, 

as investigated in (Komar et al., 2019). 

 

The processing steps of our algorithm for UV inspection are 

outlined in figure 9 and described in detail in (Birchbauer, 

Kähler, 2020b). We first detect the bright blobs representing the 

observed partial discharges as projected into the UV images. 

Based on the geo-referencing, we then create hypotheses for 3D 

location of the partial discharge along the viewing ray through 

the corresponding 2D detections. These hypotheses are 

validated using the blob detections in additional images taken 

from other viewpoints. Once a critical threshold in the number 

of accumulated 2D observations is reached, this method reports 

a partial discharge at the corresponding 3D position. A typical 

result of this approach is shown in figure 10, and it now has to 

be related to remaining inspection results. We therefore search 

for nearby infrastructure elements in our digital twin such as 

e.g. the suspension point of an insulator, a clamp or just a 

position on the conductors and associate the detected defect 

with this object. For an in-depth assessment, an operator can 

then easily browse through the high resolution RGB images of 

that component or location and analyze the cause of the 

problem. 

 

5. OUTLOOK 

5.1 Improvements on the Sensorhead 

One aspect of improving the overall system addresses the sensor 

head. This will become smaller, lighter and cheaper in the future 

in order to fit into an unmanned aerial vehicle instead of the 

current helicopter setup. We are already starting work with the 

next generation of sensors that are smaller and lighter. At the 

same time, we can also save weight on the mounting plates by 

using carbon structures within a smaller and more compact new 

design. We expect to be able to reduce the weight of the 

mounting components by 50% or more. Newer sensors also 

offer improved quality or reduced costs. 

 

Another aspect of improving the data acquisition is the 

development of a smart sensor head that can be directed to look 

at specific locations. Such a smart gimbal, that can keep points 

of interest in view (Birchbauer et al. 2018), can both 

compensate flight parameters such as roll, pitch and yaw and at 

the same time focus on specific parts of the powerline while 

passing by them, providing additional views. Cameras equipped 

with tele lenses and adjustable focus can then save on our 

current array of cameras, while maintaining the GSD values that 

the inspection requires. 

 

5.2 Improvements of Automatic Analysis 

Thanks to the modular pipeline and the common interface with 

our digital twin representation, we can easily extend or improve 

our analysis modules and add to our existing inspection criteria. 

As mentioned in Section 4, we can also e.g. replace the 3D 

semantic segmentation module with a deep learning based 

framework, once it offers benefits over our current approach, 

and our detection and classification networks can be replaced to 

keep up with the rapid progress of the computer vision 

community. Since virtually all our automatic analysis methods 

are learned algorithms, training data is paramount, and our 

models will continue improving with additional training data. 

One important aspect therefore is the long-term management of 

our trained methods with concepts from lifelong learning. Every 

new flight generates additional data, but we do not want to 

manually annotate all of this data due to the prohibitive cost this 

would incur. Identifying relevant data to minimize the manual 

annotation effort or utilizing self-supervision to automatically 

pre-annotate data are just two obvious solutions that will assist 

the further development of the trained models. 

 

5.3 Future use cases of Digital Twin 

At present, the digital twin representation in our automatic 

analysis framework is tailored to our inspection tasks. However, 

many other applications that will improve asset management for 

powerline operators can be envisioned. An obvious case is 

change detection: By comparing inspection results over multiple 

flight epochs, multiple previous and current observations of the 

same components can be observed side-by-side and the 

evolution of components can be analyzed in detail. Other use 

cases arise, if operators decide to digitalize legacy powerlines 

e.g. in preparation of repair or upgrade works. We expect that 

our current internal digital twin representation is capable of 

supporting a wide range of further use cases with little 

adaptation effort. 

 

 

Figure 9. Outline of the UV inspection module from blob detection (left) to partial discharge detection in 3D (right).  

 

 
Figure 10. Sample of partial discharges clustered in 3D. 
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6. CONCLUSIONS 

We presented a novel system for automating powerline 

inspection, comprising of a custom-built, multimodal 

sensorhead and automatic analysis method based on machine 

learning. At first, we briefly presented the state of the art in 

powerline inspection, deriving a list of relevant inspection 

criteria. This also motivated our choice of sensors and the 

requirements for the overall sensorhead configuration. Due to 

the amount of data generated with these sensors, we require 

automatic analysis methods and presented samples of such 

automated methods, that emulate the manual inspection tasks of 

current best practice. At the core, we create a digital twin 

representation of the powerline, that allows us to organize the 

data in a meaningful way and gather and combine the 

information from various sensors and inspection routines in a 

unified manner. We also gave an outlook on the further 

evolution of the overall system and additional use cases of the 

digital twin. Overall the presented system provides a solid basis 

and marks a major milestone in automating powerline 

inspection even further.  
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