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ABSTRACT: 

 

The quantification of human movements is very hard because of the sparsity of traditional data and the labour intensive of the data 

collecting process. Recently, much spatial-temporal data give us an opportunity to observe human movement. This research 

investigates the relationship of city-wide human movements inferring from two types of spatial-temporal data at traffic analysis zone 

(TAZ) level. The first type of human movement is inferred from long-time smart card transaction data recording the boarding actions. 

The second type of human movement is extracted from citywide time sequenced mobile phone data with 30 minutes interval. Travel 

volume, travel distance and travel time are used to measure aggregated human movements in the city. To further examine the 

relationship between the two types of inferred movements, the linear correlation analysis is conducted on the hourly travel volume. 

The obtained results show that human movements inferred from smart card data and mobile phone data have a correlation of 0.635. 

However, there are still some non-ignorable differences in some special areas. This research not only reveals the citywide spatial-

temporal human dynamic but also benefits the understanding of the reliability of the inference of human movements with big spatial-

temporal data. 

 

 

1. INTRODUCTION 

The spatial separation of demand and supply in the city generates 

continuous human movements, which have raised many urban 

issues, such as traffic congestion, energy consumption, air 

pollution, and infectious disease (Kwan and Schwanen, 2016). 

The quantification of human movements becomes a fundamental 

work (Gonzalez et al., 2008). Population survey and travel survey 

investigating a certain percentage of people are two traditional 

ways to gain typical human movement features in the city, such 

as travel volume, travel distance, and travel time. The 

investigation process usually needs a long time and much money, 

and costs intensive labours, therefore, fast and low cost human 

movement acquisition are demanded in related urban research 

and management. 

 

The integration of geographic information system (GIS), Internet, 

information and communication technology (ICT) generates 

more and more human related data, i.e., mobile phone data 

(Sevtsuk and Ratti, 2010; Becker et al., 2013; Cao et al., 2015), 

vehicle GPS data (Tu et al., 2010; Luo et al., 2015), smart card 

data (Kim et al., 2014; Tu et al., 2016). Such useful data have 

both spatial location (longitude and latitude ) and time stamp, 

which give us new insights on human movements in the city (Yue 

et al., 2014; Pan et al., 2013; Li and Li, 2014; Li et al., 2014). 

Combining with spatial data processing technology, they 

contribute to much innovative researches of urban planning (Liu 

et al., 2015), urban transportation (Tu et al., 2010; Wang et al. 

2012), disaster response (Miyazaki et al., 2015), location based 

service (Fang et al., 2011; Li et al., 2015), and so on. 

 

                                                                 
* Corresponding author 

It is non-negligible that different spatial-temporal data have 

different typical characteristics. Mobile phone data capture the 

movements of almost all people in the city, they are of higher 

human penetration but lower spatial resolution (Miyazaki et al., 

2015), and movements less than 500 meters are not easy to find 

(Xu et al., 2015). GPS data only report the position of vehicles 

(Tu et al., 2010), while movements by walk and bike are missed. 

Social network data and social media data, i.e., geo-tagged image, 

message, and video, are very sparse in both space and time (Zhou 

et al., 2015). They tell us different stories about urban human 

movements (Yan et al., 2013). Therefore, there are some 

questions before using them in urban applications. One important 

question is do movements inferring from different data have the 

same rhythm or spatial distribution? If not, how much is the 

difference between them? Is it acceptable for data-driven urban 

research? 

 

This paper investigates the relationship of urban human 

movements inferring from multi-source spatial-temporal data. 

Firstly, human movement by public transportation system, 

including bus and metro, is inferred from long-time smart card 

data recording the boarding actions, with the help of bus GPS 

data and geographical data of city bus and metro system. 

Secondly, another type of human movement is extracted from 

citywide time sequenced mobile phone data with a high people 

penetration. Typical features about human movements, including 

travel volume, travel distance and travel time are calculated and 

compared. To further examine the relationship between the two 

types of inferred movements, the linear correlation analysis is 

conducted on the travel volume. 
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The remainder of this paper is as follow. Section 2 describes the 

study area and data. Section 3 presents the data processing flow 

and the comparison between human movements. Section 4 

reports and discusses the obtained results. Finally, we conclude 

the contribution of this study and discuss the further work and 

research direction. 

 

2. STUDY AREA AND DATA 

This section introduces the study area and the used spatial-

temporal dataset, including smart card data, bus GPS data, mobile 

phone data, and additional GIS data. 

 

2.1 Study area 

This study was conducted in Shenzhen, China’s first special 

economic zone, north to Hongkong. It covers an area of 1992 km2 

with 10 million regular population and 8 million mobile 

population. It has six administrative districts: Futian, Luohu, 

Nanshan, Yantian, Baoan, Longgang and four functional zones: 

Guangming, Longhua, Pingshan, Dapeng (Figure 1). There are 

five metro lines in Shenzhen with totally 118 metro stations (13 

transfer stations). And the total length is about 178 km, covering 

six districts, including Luohu, Futian, Nanshan, Baoan, 

Longgang and Longhua. Besides, there are 874 bus lines with 

5265 bus stops, covering all the ten districts in Shenzhen.  

 

Figure 1. Shenzhen administrative map 

 

2.2 Smart card data 

“Shenzhen Tong” is a contactless smartcard system used for 

electronic payments in bus, metro, and some other commercial 

shops in Shenzhen. By the end of 2013, over 20 million 

“Shenzhen Tong” cards have been released. 

 

The used smart card data were collected in September 2014 and 

mainly include five fields, i.e., card id, trade type, trade time, 

station id (bus route id), vehicle id and trade fare. The field of 

trade type can only have three values, 21 and 22 represent tap-in 

and tap-out behaviour of metro passengers, and 31 is labelled as 

a bus boarding event. Hence, combining with bus GPS data or 

metro station data, travels by bus or metro can be inferred. For 

metro trips, time and station of tap-in and tap-out event would be 

recorded; while for bus trips, only boarding time and bus route id 

could be recorded. 

 

2.3 Bus GPS data 

The GPS trajectory data were collected from bus vehicles with 

GPS equipment reporting real-time location (longitude and 

latitude) with certain intervals. The used dataset was also 

collected by the bus company in September 2014 in line with 

smart card data. It includes the fields of vehicle id, time, 

longitude, latitude, speed, equipment status, etc.  

 

2.4 Mobile phone data 

The mobile phone data from a dominated communication 

company in Shenzhen, China was collected on a workday in 

March, 2012. It records individuals’ locations with intervals 

about 30 minutes, and spatial granularity is restricted at cell tower 

level. No personal information (e.g. age, gender, income) are 

available since the users’ information is anonymized. There are 

332,624,029 records in total and 14,028,486 users (about 78% of 

total population). 

 

2.5 GIS data 

Additional GIS data are also necessary to recover travels in the 

city. Three types of spatial data are used in the study, including 

road network data, public transit (both metro and bus) lines and 

stations data, and traffic analysis zone (TAZ) data. 

 

3. METHODOLOGY 

Human movements are extracted from aforementioned spatial-

temporal data and comparison is made between them. The data 

process has three main steps. First, trips are extracted from smart 

card data and mobile phone data respectively. Then, three 

indicators of human movements, including travel volume, travel 

distance and travel time are calculated, and their temporal 

variation and spatial distribution are analysed. Finally, taking 

travel volume as an example, correlation analysis is used to 

examine the relationship of human movements from different 

data source. The workflow is illustrated in Figure 2. 

 

 

Figure 2. Workflow of methodology 

 

3.1 Recovering public transit trips from smart card data 

Smart card data are processed to extract public transit trips. We 

extracted trips by metro and bus separately. 

 

For travels by metro, both the tap-in and tap-out station and time 

are recorded, so it is not difficult to extract the metro trips with 

smart card data. The major steps of extracting metro trips are as 

follow: 

(1) Select the smart card data records of which the field of trade 

type is equal to 21 or 22 (representing the event of tap-in and 

tap-out of a metro station). 

(2) Extract records according to the field of card id which 

indicates the same passenger. 

(3) Sort records ascending by the field of trade time. 

(4) Match each consecutive tap-in and tap-out records where 

the field of station is different and the difference between tap-

out time and tap-in time is within a reasonable time period 

which are set to be between two minutes and four hours. 

 

For the bus travels, the extracting method is much more 

complicated. Most of the bus lines in Shenzhen are flat-rate, 
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which means the passengers only tap once when they board the 

bus. So, only the boarding time and the vehicle id are recorded 

without the information of boarding stops or locations. Thus, it is 

more difficult to extract bus trips, and the matched bus GPS 

trajectory data are required.  

 

Given the bus records of smart card data and the matched bus 

GPS trajectory data, we can extract bus trips. The main idea of 

extracting bus trips are as follow: when a passenger takes on a 

bus, the boarding time Tb will be recorded when he taps the fare 

equipment, and at the same time, the GPS location of the bus 

vehicle will also be recorded, which means we can get the 

location <lon, lat> of the vehicle at every time t from the GPS 

trajectory data, then we can find the exact location <lonb, latb> of 

the bus corresponding to the boarding time Tb, and the process is 

illustrated by Figure 3. Finally we can matched the location <lonb, 

latb> to the closest bus stop of the recorded bus line based on our 

known bus lines and stops GIS data.  

 

 
Figure 3. Illustration of the process of matching smart card data 

and bus GPS trajectory 

 

Since the bus records from smart card data have no information 

about the alighting stop and time, the extraction of alighting bus 

stop cannot be conducted directly, instead, we need to take 

advantage of the records with derived boarding stops, and detect 

the alighting stops based on rules of transferring bus or metro 

lines and the patterns of multiday travel records. 

 

3.2 Recovering trips from mobile phone data 

The difference between the locations of two consecutive mobile 

phone records with the same id indicates a trip generated in the 

city. We recover personal trajectory from mobile phone data and 

then find trip with the spatial difference. The duration of the trip 

is equal to the time interval from the start record to the end record, 

and the trip distance also can be calculated by their position. 

However, due to the positioning error of mobile phone, we ignore 

the move less than 500 meters. After process all mobile phone 

data, city-wide human movements are obtained. 

 

3.3 Spatial-temporal variation analysis of urban travel 

Three typical features about human travel are considered to 

measure human movements in Shenzhen, including travel 

volume, travel distance, and travel time. Travel volume is the 

count of trips in an area in a certain time period. It reflects the 

travel demand of passengers within the area and the certain 

period. Travel distance is the length from a trip’s start point to 

the end point. For trips by bus or metro, it can be calculated along 

the travel route. While for trips inferred from mobile phone data, 

Euclidean distance is calculated. Travel time is the cost time of a 

complete trip. 

 

By aggregating inferred trips, average travel distance and time 

are calculated, which are defined as follow: 

∆𝐷̅̅ ̅̅
𝐼 =

∑ ∆𝐷𝑖𝑖∈𝐼

𝑉𝐼
                                (1) 

∆𝑇̅̅̅̅
𝐼 =

∑ ∆𝑇𝑖𝑖∈𝐼

𝑉𝐼
                                (2) 

 

Where  ∆𝐷̅̅ ̅̅
𝐼 = the average travel distance in the area I  

 ∆𝑇̅̅̅̅
𝐼 = the average travel time in the area I 

∆𝐷𝑖 = travel distance of a trip which is located at I  

∆𝑇𝑖 = travel time of a trip which is located at I  

 

Travel trips are aggregated at time dimension to capture the 

temporal fluctuation of inferred human movements. Total count 

of travel trips, average travel distance and time in each hour are 

calculated according to above equations. Such that, daily rhythm 

of human movements in the city are observed.  

 

Travel trips are summarized at the Traffic Analysis Zones (TAZs) 

to understand the spatial distribution of human movements. 

Considering the unbalance of the TAZ areas which may result in 

the uneven of travel volumes, i.e., TAZs with larger areas tend to 

get larger travel volumes, we further define the indicator of travel 

spatial density as the improvement of travel volume to reduce the 

impact of the size of TAZs, and it is given as: 

 

𝑑𝐼 =
𝑉𝐼

𝐴𝐼
                                        (3) 

 

Where    𝑑𝐼 = travel spatial density of TAZ I  

 𝑉𝐼 = travel volume of TAZ I 

    𝐴𝐼 = the area of TAZ I. 

 

3.4 Correlation analysis 

In order to further examine the relationship between the 

movements extracted from smart card data and mobile phone 

data, taking travel volume as an example, Pearson product-

moment correlation coefficient is used to quantify the extent of 

the relation. The Pearson coefficient is a measure of the linear 

correlation between the two variables, and has a value between -

1 and 1, where 1 denotes a total positive correlation, -1 indicates 

a total negative correlation, and 0 represents no correlation at all. 

It is defined as follow: 

𝑟 =
∑(𝑋𝑖−�̅�)(𝑌𝑖−�̅�)

√∑(𝑋𝑖−�̅�)2 ∑(𝑌𝑖−�̅�)2
                        (4) 

 

Where  Xi = travel volumes from smart card data in hour i 

Yi = travel volumes from mobile phone data in hour i  

�̅� = average value of travel volume per hour from smart 

card data  

�̅� = average value of travel volume per hour from mobile 

phone data  

 

4. RESULTS 

This section reports the obtained spatial-temporal variation of 

two revealed human movements and the correlation analysis 

between them. 

 

4.1 Spatial-temporal variation of urban human movements 

(1) Temporal variation 

The result from smart card data, bus GPS data, metro data found 

that there are 5,453,113 trips of 3, 152, 088 persons in the whole 

city. Averagely, people using public transit system generates 1.73 

trips per day.  

 

Figure 4 displays 24-hour temporal variation of public transit 

travel volume, average travel distance and time. Almost no travel 
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are observed in the night period from 0:00 to 6:00. Considering 

travel volume, there are 227,213 trips per hour with average, and 

two significant peaks are in morning rush hours (from 7:00 to 

9:00) and evening rush hours (from 18:00 to 20:00) respectively, 

as Figure 4(a) shows. The travel volume in morning rush hours 

is slightly higher than that of evening rush hours, reaching 0.7 

million. In addition, the morning rush hours last longer than the 

rush hours in evening. With respect to average travel distance, it 

peaks at about 12 km in the time period from 6:00 to 8:00 (close 

to the morning rush hours). It remains stable from 8:00 to 22:00 

with values slightly lower than 10 km. With respect to average 

travel time, due to the morning rush, the peak with 29.2 minutes 

appears at the period from 6:00 to 8:00. It fluctuates slightly 

around 25 minutes during daily working time. In the evening rush, 

it reach the other peak of 26 minutes. The relative higher values 

of average travel time in morning and evening rush hours shows 

the impact of traffic congestion involved by commuting. 

 

The results from mobile phone data capture 22,840,686 trips of 

14,028,486 persons. As the mobile phone data contain travels by 

private car, bicycle and walk, it is much larger than trips by bus 

and metro. Averagely, each person has 1.62 trips per day, which 

is lower than the value of travel by public transit system. It is 

because a few people rarely travel in a day, such as elderly people 

and children. 

 

 
(a) Travel volume 

 
(b) Average travel distance 

 
(c) Average travel time 

Figure 4. Temporal variation of trips inferred from smart card 

data 

Figure 5 displays 24-hour temporal variation of travel volume, 

average travel distance and time inferred from mobile phone data. 

Different from travels by public transit system, much trips do 

exist at night period (0:00- 6:00), which may be sourced from 

freight trunks and private cars. With respect to travel volume, 

there are 951,695 trips per hour with average. Three significant 

peaks are shown in morning rush hours (from 7:00 to 9:00), 

middle day (from 11:00 to 13:00) and evening rush hours (from 

17:00 to 19:00), reaching about 1.8 million, 1.5 million and 1.6 

million respectively, as Figure 5(a) shows. Comparing with the 

trips inferred from smart card data, there is an additional peak in 

the middle day, the travel volumes are more than doubled, and 

the evening rush hours last longer. Considering to average travel 

distance, the average is much lower than that of public transit 

travel distance which may owe to the different modes of travels 

that mobile phone data involve. And there are also three 

significant peaks, appearing in the periods from 9:00 to 10:00, 

15:00 to 16:00 and 18:00 to 19:00 respectively, which don’t 

match that of travel volume. With respect to average travel time, 

the average is much higher than that of public transit travel time 

due to the spatial resolution of mobile phone data used. The 

collecting interval of mobile phone data is about 30 minutes, 

which means the travel time derived would not lower than half 

an hour. So the travel time recovered from mobile phone data is 

not reliable since much of trips cost less than 30 minutes. 

 

 
(a) Travel volume 

 
(b) Average travel distance 

 
(c) Average travel time 

Figure 5. Temporal variation of trips inferred from mobile 

phone data 
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(2) Spatial distribution 

 

Spatial distribution of travel spatial density inferred from smart 

card data is illustrated in Figure 6. It can be seen that TAZs with 

high values of public transit travel density mainly cluster in the 

south Shenzhen, such as Luohu, Futian, Nanshan, Longhua and 

a small part of Longgang and Baoan. It is interesting that these 

areas with high value are distributed along the five metro lines, 

which is not surprising since the metro system is the backbone of 

Shenzhen public transit system and attracts nearly 30% of the 

total transit travels. 

 

Figure 7 shows spatial distribution of travel spatial density 

inferred from mobile phone data. It indicates that TAZs with high 

travel density cover most of the clustered areas in Figure 6. 

Comparing with travels from smart card data, the northern 

Shenzhen, where a huge number of people reside, also has a 

relative higher travel density, although it is not covered by metro 

lines. It suggests that mobile phone data cover more complete 

trips than smart card data in the perspective of space, while the 

latter can only include the trips generated within the coverage of 

public transit infrastructures.  

 

 

Figure 6. Spatial distribution of travel spatial density inferred 

from smart card data 

 
Figure 7. Spatial distribution of travel spatial density inferred 

from mobile phone data 

 

4.2 Correlation analysis results 

This subsection reports the correlation analysis result using the 

hourly travel volumes of the trips inferred from smart card data 

and mobile phone data. The scatter plot of 24-hour travel 

volumes inferred from the two data is showed in Figure 8. It can 

be seen that the scatter points exhibit a trend of linear correlation, 

and the global Pearson product-moment correlation coefficient r 

is 0.635. It indicates the existence of a coarse linear correlation 

between the hourly travel volumes, in spite of the difference 

between two type movements. For the high penetration of mobile 

phone data, we suggest the travels inferred from mobile phone 

data are more reliable. 

 

In order to further understand the relationship of travel volumes 

inferred by the two datasets, the correlation coefficients of 24-

hour travel volumes are calculated in each TAZs. The obtained 

result is shown in Figure 9. The values of coefficients are divided 

into several groups, the more the colour is close to red, the higher 

the correlation value, the more the colour is close to green, the 

lower the value, and TAZs with grey background are with 

negative correlation (r<0). The result indicates that the 

correlation values vary significantly across the whole study area. 

Most TAZs are with correlation values higher than 0.4. Some of 

them are with correlation over 0.8 which indicates a rather high 

positive correlation. But there are also TAZs with correlation 

close to zero or even with negative values. So we can know that 

the correlation value of 0.635 calculated above only reflects the 

overall situation across the city, and if we choose a smaller scale, 

we must take the spatial variation into consideration. 

 

It is noticeable that most areas within the blue dotted-line circle 

which are in the centre of Shenzhen (including Futian and 

Nanshan) don’t have high correlation values between travels 

extracted from the two types of data. It implies that there are 

various modes of travels in the core areas of Shenzhen, and public 

transit travels only account for limited proportions, while trips by 

walking, private cars and bicycles etc. cannot be detected by 

smart card data. It also suggests when use smart card data or GPS 

data to investigate human movement in the city, we should be 

careful about this bias owing to data source. 

 

 

Figure 8. Scatter plot of hourly travel volumes inferred from 

smart card data and mobile phone data 

 

 

Figure 9. Correlation analysis result between hourly travel 

volumes in TAZ scale 

 

5. CONCLUSION 

This study investigates the spatial-temporal variation of urban 

human movements with spatial-temporal data. Spatial data 

processing was used to extract human movement. Movements by 

public transportation system were extracted from bus GPS data 
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and smart card data. Another movements were inferred from 

mobile phone data.  Relationship of both movements from 

different data are investigated with correlation analysis. The 

obtained results demonstrates that although both movements 

exhibit typical spatial-temporal variation, there are non-ignorable 

differences between the two extracted movements. The 

correlation coefficient is 0.635. It indicates spatial-temporal data 

source should be careful when we do research about human 

movements in the city. 

 

This paper focused on the basic indicators of human movements, 

such as travel volume, travel distance and travel time. In the 

further, we will examine the some other aspects of human 

movements, i.e., the cooperation and the competition of multi-

modal transportation, the fusion of human movements from 

different data sources. The relationship between land use and 

human movements is also a valuable research direction. 
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