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Abstract. Dolomite is a magnesium-rich carbonate min-
eral abundant in fossil carbonate reef platforms but surpris-
ingly rare in modern sedimentary environments, a conun-
drum known as the “Dolomite Problem”. Marine sedimen-
tary dolomite has been interpreted to form by an uncon-
firmed, post-depositional diagenetic process, despite mini-
mal experimental success at replicating this. Here we show
that dolomite, accompanied by magnesite, forms within liv-
ing crustose coralline alga,Hydrolithon onkodes, a prolific
global tropical reef species. Chemical micro-analysis of the
coralline skeleton reveals that not only are the cell walls cal-
citised, but that cell spaces are typically filled with magne-
site, rimmed by dolomite, or both. Mineralogy was con-
firmed by X-ray Diffraction. Thus there are at least three
mineral phases present (magnesium calcite, dolomite and
magnesite) rather than one or two (magnesium calcite and
brucite) as previously thought. Our results are consistent
with dolomite occurrences in coralline algae rich environ-
ments in fossil reefs of the last 60 million years. We re-
veal that the standard method of removing organic material
prior to Xray Diffraction analysis can result in a decrease in
the most obvious dolomite and magnesite diffraction patterns
and this may explain why the abundant protodolomite and
magnesite discovered in this study has not previously been
recognized. This discovery of dolomite in living coralline
algae extends the range of palaeo-environments for which
biologically initiated dolomite can be considered a possible
source of primary dolomite.

Correspondence to:M. C. Nash
(merinda.nash@anu.edu.au)

1 Introduction

1.1 Background on the “Dolomite Problem”

The “Dolomite Problem” has been of interest to geologists
and carbonate chemists for more than a century and relates
to the mystery surrounding the abundant presence of the min-
eral dolomite [Ca0.5Mg0.5CO3] in fossil reefs (e.g. Daito-
jima) and carbonate platform sediments (e.g. the Dolomites)
and its apparent absence from equivalent modern reef envi-
ronments (e.g. Ohde and Kitano, 1981; McKenzie and Vas-
concelos, 2009; Budd, 1997). Many geochemical models
and environmental reconstructions (e.g. Griffith et al., 2008;
Bao et al., 2009) incorporate dolomitisation as a parameter
even though the exact process has not been identified.

1.2 Background on coralline algae

Coralline algae are calcifying red algae and are major reef
builders, occurring globally (Adey and Macintyre, 1973).
While modern corallines have only been confirmed back to
the Cretaceous (Aguirre et al., 2000), calcifying red algae
have a long history in the geologic record back through the
Paleozoic (Brooke and Riding, 1998; Aguirre et al., 2000)
and red algae possibly existed as far back as the Neoprotero-
zoic (Xiao et al., 2004) and Mesoproterozoic (Butterfield,
2000). Modern corallines have a high magnesium calcite
(Mg-calcite) skeleton, typically ranging from 10–20 mol %
MgCO3 (Moberly, 1970; Chave, 1952, 1954; Milliman et
al., 1971) (mol % MgCO3 is % of magnesium substituting
for calcium), although there is some degree of uncertainty
around these measurements as results vary depending on the
method used (Milliman et al., 1971; Chave, 1954). This high
magnesium calcite is meta-stable and prone to dissolution as
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pH declines (Morse et al., 2006). While modern coralline al-
gae are composed of Mg-calcite, it has been shown that the
incorporation of magnesium, as measured in the cell wall,
decreases with declining magnesium/calcium (Mg/Ca) ratio
of the ambient seawater (Ries, 2006; Stanley et al., 2002)
and in low Mg/Ca ratios equalling the Cretaceous calcite
seas (1:1), coralline algae are able to continue growing albeit
with a low Mg-calcite skeleton. Hogbom (1894) carried out
simple leaching experiments and found that by acid treating
some coralline samples the mol % of Mg actually increased.
He hypothesised the corallines had a crucial role in the for-
mation of dolomite. Researchers in the late 19th and early
20th century proposed coralline algae contained dolomite as
part of the magnesium enriched calcite skeleton, but were un-
able to prove this hypothesis (Chave, 1954). Later research
identified magnesium enriched skeletal portions approaching
dolomite composition, however the presence of dolomite was
not confirmed (Moberly, 1970).

The importance of reef building coralline algae was first
recorded in 1904 (Howe, 1912) from cores taken down to
360 m at Funafuti. The organisms were grouped in or-
der of their reef-building importance and coralline algae
was first, followed byHalimeda, foraminifera and corals
last. Hydrolithon onkodes(Heydrich) Penrose and Woelk-
ering (1992) has a key role in building and maintaining the
reef edge places, and this makes it among the most eco-
logically important of the tropical crustose coralline algae
(Littler and Doty, 1975). H. onkodescan dominate shal-
low reef front/crest coralline assemblages (Littler and Doty,
1975; Rasser and Piller, 1997; Matsuda, 1989) and some-
times comprises 100 % of species coverage (Littler and Doty,
1975).H. onkodescan grow prolifically in the right environ-
mental conditions and out-compete other calcifying algae.
While H.onkodesis prolific in tropical environments it has
also been found in warm and cold temperate environments
and distribution does not seem limited by temperature (Har-
vey et al, 2006), however the formation of thick crusts has
only been recorded on tropical reefs (Littler and Doty, 1975).
The Atlantic-CaribbeanH. pachydermum(then Porolithon
Pachydermum) is very similar to and considered perhaps
only a variety ofH. onkodes(Adey and Macintyre, 1973).
H. onkodeswas previously classified asPorolithon onkodes
and has recently been reclassified asPorolithon (Kato et
al., 2011) however we useHydrolithon onkodesas it is the
nomenclature that is presently in widespread use.

Here we present evidence that dolomite and magnesite
(MgCO3) form inside crusts of living coralline algae and thus
must be influenced, if not caused, by biological processes.
The intimate association between dolomite and coralline al-
gae suggested by our findings is consistent with the predom-
inant occurrence of sedimentary dolomite in fossil carbonate
reef environments (McKenzie and Vasconcelos, 2009; Budd,
1997; Ohde and Kitano, 1981), typically in calcifying red
algae facies (Saller, 1984; Schlanger, 1957; Budd, 1997;
McKenzie and Vasconcelos, 2009; Ohde and Kitano, 1981).

2 Materials and methods

2.1 Sample collection and preparation

Samples of living crustose coralline algae were collected un-
der permit G09/29996.1 from between 3–5 m depth below
mean low tide, along a 150 m transect on the north reef front
of Heron Island (transect headed east from 23.433285◦ S
151.929648◦ E), southern Great Barrier Reef in December
2009. Temperature was 26.1◦C and salinity 34.5 measured
using an Orion hand held meter Photosynthetic activity was
confirmed using a pulse amplitude modulated (PAM) fluo-
rometer (Russell et al., 2009). Samples were 2 mm–10 mm
thick, not subjected to any chemical cleaning process and
were sun-dried.H. onkodeswere identified in SEM-EDS by
anatomy of reproductive conceptacles and thallus contain-
ing horizontal rows of trichocytes (Ringeltaube and Harvey,
2000).

2.2 Xray diffraction

Powder X-ray diffraction was carried out with a SIEMENS
D501 Bragg-Brentano diffractometer equipped with a
graphite monochromator and scintillation detector, using
CuKα radiation. Samples were milled by hand in acetone
in an agate mortar, some with fluorite added as an internal
standard, and suspended on quartz-low background holders.
Scan range was 2 to 70◦ 2theta, step size 0.02◦ 2theta, and
scan speeds varied from 1◦/min to 7◦/min. The results were
interpreted using the SIEMENS software package, Diffrac-
plus Eva 10 with ICDD database PDF-2 for identification,
and RIETICA (Hunter, 1998) for modelling. Parameters re-
fined in the Rietveld modelling using a Pseudo-Voigt func-
tion included six background parameters, zero correction,
scale parameters of all phases (calcite, dolomite, magnesite,
aragonite), up to three peak shape parameters per phase, a
preferred orientation parameter for calcite, and unit cell pa-
rameters of calcite and magnesite. Two different calcite com-
positions were refined (17.5 mol % and 24 mol %) as they
best account for peak asymmetry. The Mg-content of cal-
cite was calculated from the (104) peak position (Goldsmith
et al., 1955). Precision of measurements was± 0.25 mol %.
Fifteen samples were analysed and 4 sub-samples. All sam-
ples were taken as a bulk slice down the sample.

2.2.1 Scanning electron microscopy-energy dispersive
spectroscopy (SEM-EDS) and inductively coupled
plasma – atomic emission spectroscopy
(ICP-AES)

The SEM-EDS was carried out using a Hitachi 4300 SE,
equipped with an integrated Oxford X-Max element detec-
tor, operated at 15.0 kV, 25 mm working distance, current
0.6 nano ampere, beam width and penetration approximately
3 µm. Measurement precision was± 0.05 mol %. Samples
were cut with a rock saw and embedded in resin, polished
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and carbon coated and held in with carbon tape, one sam-
ple was coated with Platinum for one session. When con-
ducting the SEM-EDS a measurement was taken of the resin
surrounding the sample. This enabled us to identify when a
sample measurement included resin and these measurements
were discarded. The extent to which the resin infiltrated the
thallus was impossible to be quantified, however measure-
ments returning a resin signature were infrequent and resin
infill was not considered problematic. ICP-AES was car-
ried out using a Varian Vista Pro Axial CCD simultaneous
ICP-AES, power 1.30 kW, plasma flow 15.0 L min−1, auxil-
iary flow 1.50 L min−1, nebulizer flow 0.70 L min−1, repli-
cate read time 5.00 s, instrument stabilisation delay 15 s, and
5 replicates. AccuTrace reference standards were used. 3 mg
of sample was digested in 10 ml of 10 % nitric acid. A check
standard was run every third analysis. Relative standard devi-
ation of mol % MgCO3 is less than 0.2 %. Thirteen samples
were analysed.

3 Results

For our results we use the term “protodolomite”, a descrip-
tion commonly used for sedimentary dolomite that does not
exhibit the XRD reflections associated with ordered dolomite
(e.g. Ohde and Kitano, 1981).

3.1 SEM-EDS

We found substantial amounts of protodolomite and mag-
nesite within the Mg-calcite skeleton of the coralline al-
gaeH. onkodes(Fig. 1). A detailed analysis using SEM-
EDS reveals that protodolomite is pervasively present within
the honeycomb-like cell wall structure as rims surrounding
cell spaces that are in-filled to various degrees by magne-
site. SEM spot analyses (Supplement, Table 1) show that the
protodolomite rims (2–4 µm thickness) range in composition
from 38–62 mol % MgCO3 (n = 37), thus exceeding previ-
ously reported protodolomite ranges of 38–50 mol % MgCO3
(Budd, 1997). Cell walls have 8–25 mol % MgCO3, (n = 57).
Cells (5–15 µm) are partially filled by magnesite with 95–
99.5 mol % MgCO3, (n = 18). Concentric zonations are ap-
parent around some cells, extending into the cell wall and
could reflect organic material or varying magnesium con-
tents, however as the SEM-EDS weight % results were gen-
erally higher than the organic rich cell spaces and there were
no voids associated with these bands, we consider it unlikely
these zonations are organic matter and therefore a varying
magnesium content is the probable explanation. An SEM
cross section of a reproductive conceptacle (Fig. 2) shows
larger scale dolomite and magnesite in-fill. It seems the dis-
tribution of magnesite within the conceptacle is constrained
by the precursor organic fabric. While mostly it is magne-
site that in-fills the cell spaces, dolomite also in-fills some
cell spaces. There are some small areas that do not conform

 

Fig. 1. SEM backscattered electron (BSE) image of coralline alga
(sample 302) showing detail of magnesite cell infill(a), (b) and
protodolomite rims(e) within Mg-calcite cell wall structure(d).
Black lines and textures within the cells are most likely voids
or remnant organic structures. Above(d) micron scale bands of
slightly darker grey within the cell walls indicate varying magne-
sium within the cell wall. Concentric zonation is seen around cells
(top left). SEM-EDS spot analyses of labeled sites(a) = 99.22,
(b) = 99.19,(c) = 23.9, (d) = 15.17,(e) = 45.75 mol % MgCO3.
Scale bar = 5 µm. Cell wall structure (Mg-calcite 8–25 mol %
MgCO3) protodolomite (38–62 mol % MgCO3), magnesite
(95–99.55 mol % MgCO3), void.

to the typical structure and may represent a second uniden-
tified species (Fig. 1 and 2 Supplement I). Most striking
about these textural features (and Figs. 3, 4) is the similar-
ity to those observed in Cenozoic island dolomites (Budd,
1997; Land, 1973; Ward and Halley, 1985), which show
pronounced dolomite rims, concentric zonation, inclusions
within cells and vuggy textures (Ward and Halley, 1985).

Although the time frame over which dolomitisation of sed-
imentary carbonates takes place has not been precisely iden-
tified, it is generally thought to form over time scales of up to
millions of years (Saller, 1984). We note that while the cells
in the top photosynthetically active layers of the coralline al-
gae are mostly void of mineral in-fill (Fig. 5) small amounts
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Fig. 2. SEM BSE image of coralline alga (sample 302) showing
infilled cells within cell wall structure (top), and a large concep-
tacle (bottom) that is filled with magnesite(a) and protodolomite
(b), (c). SEM-EDS spot analyses of conceptacle mineralisation
(a) = 99.55,(b) = 59.75,(c) = 61.67 mol % MgCO3. Original con-
ceptacle fabric is ingrown by cells, now dolomitised, cell shapes are
visible in dolomitic areas. Magnesite in-fill may be correlated with
precursor organic content. Cells are either completely filled with
protodolomite(d), rimmed by protodolomite and filled to various
degrees by magnesite(e), or filled by only magnesite(f). From these
images it appears that dolomitisation spreads out from the cells into
the cell wall(g). Cell void of mineral in-fill(h). Increased dolomi-
tisation can be seen at the top of the figure compared to the base.
These areas of dominance of one mineral phase over another ap-
pear in patches throughout the section. Scale bar = 40 µ. Legend
see Fig. 1.

of magnesite in-fill were observed (Fig. 3 Supplement I).
Protodolomite rims occur within 1 mm of these top layers.
There is a noticeable, though not always consistent, increase
in the amount of magnesite and protodolomite down sample
towards the base of the crust (Fig. 6). Thus, in contrast to
existing theories, protodolomite and magnesite precipitation
are contemporaneous with organism growth.

3.2 XRD

The presence of protodolomite and magnesite was confirmed
with XRD analyses (Fig. 7). The XRD pattern is dominated
by peaks of the Mg-calcite of the cell walls. These peaks
are unusually asymmetrical and have high shoulders towards
higher 2-theta angles (towards smaller unit cell sizes), over-
lapping with the wide peaks of protodolomite and magnesite;
see for example peak C (104). In order to resolve these peaks,
profile fitting with the Rietveld method was carried out. Ri-
etveld refinement using Mg-calcite as the only phase resulted
in significant misfits in the areas of protodolomite and mag-
nesite (Rp = 12.53, Rwp = 18.50) (Fig. 7b). In contrast to
this, Rietveld refinement including dolomite and magnesite
in addition to Mg-calcite results in a good fit (Rp = 5.96,

 

Fig. 3. SEM BSE (SE) image of aragonite-bearing coralline al-
gae (Sample 302) showing the typical fabric of protodolomite rims
around cells that are partially to completely filled with magnesite.
White rims at the top(f) are aragonite. Textures within cells may
represent organic material, or mineralisation that was constrained
by the organic fabric. Concentric zonations are seen within the cell
wall material. SEM-EDS spot analyses of labeled sites,(a) = 11.32,
(b) = 13.88,(c) = 98.44,(d) = 99.16 mol % MgCO3, (e) = hole,
(f) = 0.67 (Strontium = 1.69 wt % indicative of aragonite). Scale
bar = 20 µm. Legend see Fig. 1.

Rwp = 8.11), demonstrating that dolomite and magnesite are
present in the sample (Fig. 7c). The significant width of the
dolomite XRD maxima suggests that the dolomite is very
finely grained and not well crystallized, probably disordered
(Zhang, 2010), and possibly bordering on an amorphous
crystal structure, thus not diffracting X-rays well. Moreover,
from the SEM analyses we know that this protodolomite has
a range of compositions and thus unit cell dimensions, also
contributing to peak width. This made refinement of the unit
cell impossible, and it was fixed to stoichiometric dolomite.
The refined magnesite unit cell dimensions area = 4.678(1)
Å and c = 15.192(1) and thus about 1 % larger than ideal
magnesite, which is typical for sedimentary magnesite (Graf
et al., 1961) .
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Fig. 4. SEM BSE image of coralline alga section (sample 47) taken
with increased contrast to visualize the concentric zonations caused
by different compositions of Mg-calcite in the cell wall. Black rep-
resents magnesite or void, grey is protodolomite and white to light-
grey is Mg-calcite. (a): protodolomite rim 50.65 mol % MgCO3
(b): protodolomite rim 55.29 mol % MgCO3. Black rims around a
and b are not void and assumed to be magnesite, but are too narrow
for accurate spot analysis. Scale bar = 10 µm.

 

Fig. 5. SEM Secondary Electron image of coralline alga (sample
47), showing varying amounts of mineralisation in the top pho-
tosynthetically active layer and underlying crust. White indicates
space void of mineral in-fill, grey is mineralised cell walls and in-
filled cells, black is epoxy resin. Whilst the top layer clearly has less
in-fill, it does contain some magnesite cell in-fill close to surface.
Protodolomite is noticeably least present in the top layer compared
to basal layers. Scale bar = 200 µm.

The typically very broad protodolomite (Zhang, 2010)
and magnesite (Graf et al., 1961) reflections were observed
in 10 out of 19 samples as a continuous shoulder on the

 

 

 

 

Fig. 6. SEM (SE) images showing the difference in cell in-fill be-
tween the top layers and the lower layers of a coralline alga (sam-
ple 47). White indicates void of mineral in-fill (caused by charge
build-up in sample) and shades of dark grey are in-fill. Top image
taken at base of photosynthetically active layer, 0.5 mm from top of
sample, showing that most cells are empty of mineral in-fill. Scale
bar = 25 µm. Bottom image taken at 4 mm depth, showing abundant
cell mineral in-fill. There was a general, although patchy trend for
increasing cell in-fill towards the base.

(104) calcite peak, sometimes ending in a distinct magne-
site maximum. The remaining 9 samples displayed a strong
asymmetry of the calcite peak towards higher 2-theta angles
(Fig. 8). While such an asymmetry is generally interpreted to
represent Mg-calcite that is more Mg-rich than the average
(Milliman et al., 1971) we note that it could also represent
protodolomite. Ca-Mg disorder in the dolomite structure in-
creases the unit cell size (Zhang, 2010) thus shifting the XRD
peaks of Mg-calcite and protodolomite even closer together,
so that the peak range for protodolomite with compositions
of 38–50 mol % MgCO3 (Zhang, 2010) actually sits in the
same peak range as 30–37 mol % MgCO3 calcite calculated
using a standard Mg-calcite correlation curve (Goldsmith et
al., 1955). Indeed, when investigating one of the samples,
H56, with such asymmetry using SEM-EDS, similarly to the
magnesite rich samples no clear compositions in the range
28–36 mol % MgCO3 were found, however protodolomite
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Fig. 7. (a), Powder X-ray diffraction pattern of coralline algae
showing the main peaks of protodolomite (D), magnesite (M) and
Mg-calcite (C)(b), Rietveld refinement using Mg-calcite as the only
phase. To account for peak asymmetry two calcite compositions
were refined (17.5 and 24 mol % MgCO3). (c), Rietveld refinement
including dolomite and magnesite in addition to calcite.

composition of 38–40 mol % MgCO3 was measured (Sup-
plement Table 2), suggesting that its presence contributes to
the calcite peak asymmetry in this case. Most of the cell in-
fill in H56 was by Mg-calcite 16–27 mol % MgCO3. H56
appeared to contain multiple genera, and identification to
the species level was not possible. However, it seemed that
bothHydrolithonsp. andLithophyllumsp. were likely to be
present. This opens up the possibility that previous stud-

 

Fig. 8. Powder X-ray diffraction patterns of coralline algae, demon-
strating how the presence of protodolomite and magnesite manifests
itself in XRD analyses. In examples(a), (b) and(c), the calcite 104
reflection has a broad shoulder towards higher angles 2-theta, in-
dicative of the presence of significant amounts of protodolomite and
magnesite. This is consistent with the high Mg-contents of these
samples (26.17–33.33 mol % Mg by ICP-AES). In(d), (e) and(f),
the calcite 104 reflection has no significant shoulder, but displays a
strong asymmetry that is typical for biogenic Mg-rich calcite (Mil-
liman et al., 1971). This could mask the presence of protodolomite.
For easier viewing reflections are labelled in selected scans only:
Mg-rich calcite (C), dolomite (D), magnesite (M), fluorite (F), arag-
onite (A), halite (H).

ies noting similar peak asymmetry for other tropical species
(Milliman et al., 1971), may have overlooked the presence of
protodolomite when basing their findings solely on XRD re-
sults without the advantage of recent research on disordered
dolomite cell size (Zhang, 2010). Aragonite was identified
by XRD in 12 of the 19 samples (Supplement Table 3) and
is seen as rims in Fig. 3. As SEM was not done on all the
samples it is not known whether all aragonite is present as
rims or may be remnants of coral overgrown by the coralline
algae.

Applying the standard method of calculating the aver-
age Mg-calcite composition based on peak position (Gold-
smith et al., 1955) the samples with dolomite and magnesite
peaks returned a composition of 17.45 mol % MgCO3 (Sup-
plement Table 3) and the remaining samples an average of
16.78 mol % MgCO3.

Using ICP-AES to measure bulk magnesium concentra-
tion, results ranged from 22.60 to 33.70 mol % MgCO3 (Sup-
plement Table 3), significantly higher than those returned by
XRD, reflecting the presence of the protodolomite and mag-
nesium phases. This discrepancy has been well recognized in
previous research (Chave, 1954) where it was attributed to ei-
ther Mg-calcite with up to 30 mol % MgCO3, problems with
the peak modeling curve (Chave, 1954), or to the presence of
amorphous brucite [Mg(OH)2] (Milliman et al., 1971).
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4 Discussion

4.1 Results compared to previous work on coralline
algae

While the composition of the cell wall structure measured
by SEM-EDS is in agreement with previous studies of trop-
ical coralline algae (Stanley et al., 2002; Moberly, 1970) the
presence of protodolomite has not previously been confirmed
(Moberly, 1970). Other than a miniscule amount of magne-
site composition (mineralogy not confirmed by XRD) in one
cell of a fresh coralline alga,Hydrolithon gardineri, from the
Marshall Islands (Moberly, 1970), we could find no previous
record of magnesite in coralline algae. Moberly (1970) iden-
tified magnesium enriched cell rims (2 µm wide) and mea-
sured compositions approaching dolomite yet rejected the
presence of dolomite. We note, however, that the analytical
beam was 6 µm wide and therefore measuring an average of
the rim and surrounding cell walls, which have 12–17 mol %
MgCO3, indicating that the rims themselves were likely to
have dolomite and/or magnesite composition. Moberly also
noted the presence of cell in-fill by calcite and Mg-calcite in
tropical corallines.

We propose that the standard method of bleaching, us-
ing either household bleach or peroxide, prior to analysis
(Bischoff, 1983) may not only remove the cell organic ma-
terial, but also Mg-rich carbonates such as dolomite and
magnesite from within the cell space, which could explain
why their presence in coralline algae has not been discov-
ered earlier. This proposition is supported by two argu-
ments. Firstly, bleaching has been noted in the past to re-
duce the bulk magnesium content of samples (Milliman et
al., 1971). A decrease in magnesium equivalent to a fall
from 29 mol % MgCO3 to 25 mol % MgCO3 was measured
for a Hydrolithonsp. Secondly, we conducted bleaching ex-
periments on eight samples, comparing their XRD traces be-
fore and after treatment, whereby four samples displayed
significant changes in the main carbonate peak (104) shape
(Fig. 9), two showed no change and two were inconclusive.
While the calcite peak position used to calculate the mol %
MgCO3 is not affected, the peak shape, especially the asym-
metry towards dolomite composition, can be altered signif-
icantly by bleaching, with a noticeable reduction of the ob-
vious dolomite signal in some samples. The alteration of
the magnesite peak was less conclusive, ranging from re-
duction in peak height to no change at all. This shows
that bleach treatment has the potential to alter the carbonate
content of such algae specimens, and that XRD data taken
from bleached samples may not be representative of the liv-
ing organism. Note that major studies on coralline miner-
alogy in the 1950’s–1980’s (Chave, 1954a; Schmalz, 1969;
Moberly, 1970; Milliman et al., 1971; Bischoff et al., 1983)
treated their samples with bleach, peroxide or otherwise to
remove organic matter, and it is possible that mineralisation

 
Fig. 9. Comparison of XRD data of anH.onkodessample before
(grey) and after treatment with bleach (black), focusing on the (104)
carbonate peak. C, D and M indicate peak positions of calcite, ideal
dolomite and magnesite. The decreased intensity between dolomite
and magnesite suggests removal of such compositions by bleaching.
Sample from Bise, Okinawajima Island, Japan, collected in May
2007 from approximately 5 m depth at the reef front, (Kato et al.,
2011).

closely associated with such organic matter could have been
removed at the same time.

Possibly also contributing to the failure to recognize
dolomite previously is the inconsistency in coralline iden-
tification complicating reliable comparisons on mineralogy.
Originally shallow water corallines were referred to collec-
tively as ‘Nullipores’ (Howe 1912) and this first major study
of coral reef cores incorrectly identified the corallines as
Lithothamnion– a deep or cold water genus. These were
probably Hydrolithon (then Porolithon) and another com-
mon tropical genus,Neogoniolithon(Adey and Macintyre,
1973). When our study began theonkodeswasH. Onkodes,
since completion theH. onkodeshas been reclassified back
to Porolithon (Kato et al., 2011). Corallines have different
names for what can be the same species, e.g.H. pachyder-
mumfrom the Atlantic is probably the same asH. onkodes
(Adey and Macintyre, 1973). Identification to the species
level can challenging, indeed even in this study sample H56
was identified in the field asH.onkodeshowever under SEM
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was seen instead to be multiple species or even genera which
were not able to be reliably identified.

We could find no published or unpublished mineralogical
analyses ofH. onkodesand this may also explain why this
protodolomite and magnesite has not previously been discov-
ered. The first studies on coralline mineralogy using XRD
referred only to algae (Chave, 1952) or the genus, (noHy-
drolithon) (Chave, 1954). Milliman (1971) identified most
corallines to the species level however theHydrolithon(then
Porolithon) were only to genus.H.onkodesspecimens used
for species identification studies are de-calcified in nitric acid
as standard procedure before analysis is undertaken (Harvey
et al, 2006). Given the difficulty in identifying protodolomite
by XRD without the benefit of detailed SEM-EDS or the re-
cent work identifying the shift in protodolomite peak posi-
tion (Zhang, 2010) to that of higher Mg-calcite, from the
common reporting of XRD curve asymmetry and discrep-
ancies with bulk magnesium (Milliman et al., 1971; Chave,
1952; Moberly, 1970) it seems probable that protodolomite
in coralline algae has been measured many times in past stud-
ies but was not able to be identified or confirmed. Moreover,
these reports have included various genera and species col-
lected from diverse locations outside of the tropical environ-
ment, indicating the occurrence of protodolomite is not re-
stricted to our sample locations and may be widespread.

4.2 Applying results to interpret fossil dolomite
formation

Sedimentary dolomite in the geological record is commonly
found in formerly warm, shallow, high energy, platform
or atoll margin environments (McKenzie and Vasconcelos,
2009; Ohde and Kitano, 1981; Budd, 1997; Schlanger, 1957)
and is typically associated with coralline algae (Ohde and
Kitano, 1981; Budd, 1997; Schlanger, 1957). In recent
coral-algal reefs the primary marine carbonate minerals are
low magnesium calcite [rhombohedral CaCO3 with small
amounts (<5 %) of magnesium substituting for calcium] and
aragonite [orthorhombic CaCO3]. Yet in a Pleistocene fossil
reef around the reef crest the dolomite content was found
to be more than 70 % (Ohde and Kitano, 1981). It has
been considered that the inclusion of dolomite into sedimen-
tary systems must be a post-depositional, diagenetic process,
where magnesium replaces calcium in the existing carbon-
ate crystal structures (“dolomitisation”) (e.g. Budd, 1997).
This paradigm has been adhered to for at least half a century
despite experimental studies failing to replicate the process
(McKenzie and Vasconcelos, 2009). While the discovery of
microbially associated dolomite forming in anoxic environ-
ments (Vasconcelos and McKenzie, 1997) and freshwater en-
vironments (Roberts et al., 2004) points towards a microbial
mediation, there has not yet been identified a microbial role
in dolomite formation in living coral reefs and thus it is un-
clear whether microbially mediated dolomite could explain
the abundant dolomite found in relict coral-algal reefs.

Table 1. Summary of XRD results, full details in the Supplement.

Summary of XRD results

Samples analysed n = 15
Subsamples n = 4

average mol % MgCO3 17.45
for magnesite samples

average mol % MgCO3 16.78
for asymmetrical

replicate std. dev (n = 4) 0.08 mol % MgCO3
subsample std. dev (n = 7) 0.26 mol % MgCO3

Assuming that the processes taking place to create the ob-
served mineral phases have persisted through time, we ap-
ply our findings to interpret protodolomite formations in an
emerged Pleistocene reef (Ohde and Kitano, 1981). To es-
tablish whether there is sufficient magnesium present within
the coralline algae to form the quantity of dolomite ob-
served in fossil coral reefs, we assumed a closed system
and used a mass balance approach (Lohmann and Meyers,
1977) to calculate potential yield of dolomite. We calcu-
lated that 66 mol % of the magnesite bearing algal carbon-
ate of this study can potentially form protodolomite assum-
ing an average composition for sedimentary protodolomite of
44 mol % MgCO3 (Ohde and Kitano, 1981) and 17.45 mol %
MgCO3 for Mg- calcite. Carbonate rock from reef crest
zones of the emerged Pleistocene reef contains approxi-
mately 73 wt % protodolomite and 27 wt % low Mg-calcite
(4 mol % MgCO3). If all the magnesium in our dolomite and
magnesite- rich coralline algae samples were to convert to
this low Mg-calcite and protodolomite, then the final equi-
librium phase would comprise 72 wt % protodolomite and
28 wt % low Mg-calcite, showing there is sufficient magne-
sium within the living phase to provide the final mineral pro-
portions as measured in this Pleistocene reef. The samples
without the magnesite shoulder return 47 %–57 % potential
protodolomite, however based on the visible high porosity,
presence of prolific borings and high degree of friability of
these samples, we consider it unlikely that they remain a part
of the reef structure and instead break apart, perhaps provid-
ing micron scale dolomite crystals to proximal sediment.

The total magnesium contained in our most magnesium-
rich samples can provide an elegant mass balance for the
final dolomite proportions in the fossil reef. The loca-
tions of protodolomite in the Pleistocene reef (Ohde and Ki-
tano, 1981) are consistently restricted to the same areas that
coralline algal crusts, particularly ofH.onkodes, form prolifi-
cally in modern reefs, i.e. shallow, high energy zones of trop-
ical coral-algal reefs (Rasser and Piller, 1997; Ringeltaube
and Harvey, 2000). With this in mind, we can extend this inti-
mate association of coralline algae and dolomite to examples
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of other occurrences of dolomite in the geological record.
Dolomitised coralline algae are ubiquitous in Cenozoic is-
land dolomites and is, in fact, the fabric most likely to be
dolomitised (Budd, 1997). The mid Miocene saw a shift in
coral reef formation, with extensive development of coralline
algal facies replacing corals as the dominant carbonate pro-
ducer (Halfar and Mutti, 2005) and this may well explain the
formation of massive dolomite occurrences during that time
(Budd, 1997). In Eocene sections of a core from Enewetak
atoll, dolomite appeared only in association with coralline al-
gae and displayed crystal growth which appeared to be con-
strained by the shape of the coralline algae (Schlanger, 1957).
Extending our comparison beyond the confirmed identifica-
tion of corallines in the Cretaceous must remain speculative.

Dolomite has been recorded forming in multiple biotic set-
tings, in echinoderms (Schroede, 1969), by or in association
with microbial activity (Vasconcelos and McKenzie, 1997;
Bontognali et al., 2010), and in association with algal mats
(Davies et al., 1975). Coralline algae is widespread and can
be volumetrically significant. This discovery extends the
range of palaeo-environments for which biologically initi-
ated dolomite can be considered a possible source of primary
dolomite.

4.3 Possible processes taking place

Future studies should aim at identifying the exact forma-
tion processes of the observed magnesite and protodolomite,
whether they are biologically induced or biologically con-
trolled by the coralline algae. At this stage we can only
speculate as to the processes taking place. As the magnesite
in-fill within cells is pervasive but not consistent, this sug-
gests a biologically induced rather than controlled reaction.
This may be mineralisation resulting from a supersaturation
of magnesium relative to calcium in the cell space as cell
wall calcification takes place. Noting that there is an appar-
ent increase in protodolomite towards the base layers of the
coralline algae (sample 47), and that protodolomite appears
almost exclusively as cell rims, this implies that over time
a reaction takes place between the magnesite and cell wall
to form the protodolomite dolomite. The actual mechanisms
that induce this reaction may include internal changes of pH
from photosynthesis and respiration (Chisholm et al., 1990;
de Vrind-de Jong and de Vrind, 1997) and metabolic activity
(Pueschel et al., 2005) that lead to localised dissolution and
re-precipitation of the carbonate minerals.

5 Conclusions

This study presents empirical evidence that formation of
protodolomite can be biologically mediated in modern coral
reef environments, and occurs in an organism that has at
times in geological history dominated global carbonate reef
development (Aguirre et al., 2000; Adey and Macintyre,

1973). While it is true that diagenesis has an important role
to play in the reorganization of magnesium in carbonates
(Lohmann and Meyers, 1977), the biologically associated
mechanism taking place in living calcifying algae could be
the key to understanding how the magnesium arrives in such
high concentrations in the first place. Biological vital effects
may play an important role in the fractionation of stable iso-
topes in dolomite, meaning that models and studies that rely
on these isotopic data, and assume that dolomite formation
is diagenetic, may have to be revisited (e.g. Bao et al., 2009;
Budd, 1997; Saller, 1984). Further, reconstruction of past en-
vironments of dolomite deposition will be aided by consid-
ering the conditions needed for the development of coralline
algal dominated reefs.

Supplementary material related to this
article is available online at:
http://www.biogeosciences.net/8/3331/2011/
bg-8-3331-2011-supplement.pdf.
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