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ABSTRACT:

Human detection and tracking has been a prominent research area for several scientists around the globe. State of the art algorithms
have been implemented, refined and accelerated to significantly improve the detection rate and eliminate false positives. While 2D ap-
proaches are well investigated, 3D human detection and tracking is still an unexplored research field. In both 2D/3D cases, introducing
a multi camera system could vastly expand the accuracy and confidence of the tracking process. Within this work, a quality evaluation
is performed on a multi RGB-D camera indoor tracking system for examining how camera calibration and pose can affect the quality of
human tracks in the scene, independently from the detection and tracking approach used. After performing a calibration step on every
Kinect sensor, state of the art single camera pose estimators were evaluated for checking how good the quality of the poses is estimated
using planar objects such as an ordinate chessboard. With this information, a bundle block adjustment and ICP were performed for
verifying the accuracy of the single pose estimators in a multi camera configuration system. Results have shown that single camera
estimators provide high accuracy results of less than half a pixel forcing the bundle to converge after very few iterations. In relation
to ICP, relative information between cloud pairs is more or less preserved giving a low score of fitting between concatenated pairs.
Finally, sensor calibration proved to be an essential step for achieving maximum accuracy in the generated point clouds, and therefore
in the accuracy of the produced 3D trajectories, from each sensor.

1 INTRODUCTION

In recent years, computer vision and machine learning groups
started developing algorithms for detecting people in an orga-
nized 3D point cloud which can be quite promising considering
the metric informations that can be extracted from the detected
people. In (Luber et al., 2011) a machine learning technique for
detecting people in a point cloud using features trained in RGB
and Depth images was developed. Another approach consists
in an on-line boosted target models for detection and tracking
(Spinello and Arras, 2011). These aforementioned techniques are
applied using a single sensor; these approaches might suffer of
typical 2D related problems which might occur in some scenar-
ios, such as occlusions, fast illumination changes, natural or phys-
ical scene constraints. Therefore it is important to investigate and
research on techniques applied in a multi camera system, which
can enhance the quality of informations retrieved from the envi-
ronment and overcome the limitations of single camera systems.
In this publication, we evaluate the calibration approaches for sin-
gle and multiple camera, which are used in an indoor configura-
tion for human detection and tracking: knowing the absolute and
relative position of the cameras, we are able to reconstruct a full
3D scene which can be analysed by tracking algorithms.

1.1 Related Work

In this work, we used a RGB-D sensor, a Microsoft Kinect, a
low cost device which disrupted the computer vision’s world, en-
abling a new series of studies, techniques and results. One of
the most widely used approaches to calibrate a single camera,
modeled as a pinhole camera model is the Brown model (Brown,
1971), and also the technique explained in (Zhang and Zhang,
∗These authors contributed equally to this work

1998) which estimate intrinsic camera parameters using a planar
pattern. An analysis on the accuracy of data acquired using a Mi-
crosoft Kinect was discussed extensively in (Khoshelham, 2011)
and, for indoor mapping applications, in (Khoshelham and El-
berink, 2012).
Since the RGB and the Infrared sensor must be co-registered, a
cross calibration of both sensors must be performed. In (Almazan
and Jones, 2013), they proposed an interesting approach to cali-
brate Infrared and RGB sensors using normals on a plane is de-
scribed.
In a multiple camera system, it is fundamental to know the po-
sition of each camera respect to an object; some techniques con-
cerning single camera pose estimation and solution to the Per-
spective Three Point problem are discussed in (Gao et al., 2003)
and (Lepetit et al., 2009). More refined approaches to compute
intrinsic and extrinsic camera parameters, pose estimation and
scene reconstructions are based on bundle adjustment, as reported
in (Hartley and Zisserman, 2004) and (Luhmann, 2011). In gen-
eral, the reconstructed 3D scene obtained from bundle adjustment
or other techniques might require a better alignment and refine-
ment: the best choice is to run the Iterative Closest Point (Besl
and McKay, 1992) or one of its variants.
We mentioned above that human detection and tracking is an ac-
tive topic: some interesting results are presented in (Luber et al.,
2011) and (Spinello and Arras, 2011), which use a trained classi-
fier based on RGB and Depth images, using Histograms of Ori-
ented Gradients (HOG) and Histograms of Oriented Depths based
detectors.
The approach used in this paper was inspired from our previous
work (Amplianitis et al., 2014), where each point cloud is ana-
lyzed independently from others and the active foregrounds are
detected and tracked.
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2 THEORETICAL BACKGROUND

This section provides the reader with an overview of theoretical
and mathematical disciplines intended for understanding the pro-
posed approach.

2.1 Calibration

Calibration involves finding the parameters that will correct the
position of an image point due to lens distortions. Within this
work, calibration was done by combining the 10-parametric model
introduced by (Brown, 1971) and the calibration approach in-
troduced by (Zhang and Zhang, 1998). Employing the pinhole
camera model, this is an ideal mathematical assumption for cam-
eras that often deviate from the ideal perspective imaging model.
Also, the pinhole model comes along with lens distortions param-
eters which can compensate lens errors and give correct image
points. Most important type of distortion is the radial distortion
which causes an inward or outward position of the image point
from its ideal position and is expressed by:

∆xrad = x[k1r
2 + k2r

4 + k3r
6 + . . . ]

∆yrad = y[k1r
2 + k2r

4 + k3r
6 + . . . ]

(1)

where x, y are the distorted image points, r is the euclidean dis-
tance of every point in the image with respect to the principal
point (also known as image radius) and k1, . . . , kn are the ra-
dial distortion coefficients used for modelling the radial distortion
curve. For most standard types of lenses, going further than the
third order parameters could be neglected without any significant
loss in the accuracy of the points.
Second form of distortion is the decentering (or tangential) dis-
tortion which is caused by physical elements in a lens not being
perfectly aligned to the image plane and it’s existance is mostly
due to manufacturing defects and can be compensated by the fol-
lowing function:

∆xdec = p1(r2 + 2x2) + 2p2xy

∆ydec = p2(r2 + 2y2) + 2p1xy
(2)

where p1, p2 are the decentering parameters. This lens correc-
tion part can give large values for low cost cameras (such as
surveillance cameras) and smaller quantity distortion values for
high quality lenses.
Finally, the affinity and shearing parameters are used to describe
deviations of the image coordinate system with respect to the non
orthogonality and uniform scaling of the coordinate axes. This is
mathematically expressed as:

∆xaff = b1x+ b1y

∆yaff = 0
(3)

where b1, b2 express the affinity and shearing parameters respec-
tively. It is noteworthy that in most cameras used in close range
application, b1 and b2 are set to zero.
Overall, these individual terms used to model the imaging errors
could be summarized as follow:

∆x′ = ∆xrad + ∆xdec + ∆xaff

∆y′ = ∆yrad + ∆ydec + ∆yaff

(4)

For the calibration method introduced by (Zhang and Zhang, 1998),
this is considered a well suited technique for finding the pose
(position and rotation) of a camera by observing a planar pattern
object (such as a chessboard) shown from at least two different

points of view. It is a close form solution, followed by a non-
linear refinement based on a maximum likelihood criterion. For
further technical information refer to (Zhang and Zhang, 1998).

2.2 Single camera pose estimation

Single camera pose estimation is a topic extensively investigated
for many decades and it has several applications not only in com-
puter vision but also in relevant fields such as robotics and aug-
mented reality fields. Within this work, a quality evaluation on
a recent iterative and non-iterative approach is made by checking
the quality of the camera pose through its reprojection error. Sub-
sequently, these pose parameters, together with the lens distortion
coefficients computed in the calibration step for each camera, are
given as initial values to a photogrammetric bundle block adjust-
ment algorithm. Relative information between camera pairs is
crucial for determining the initial rigid transformation guess re-
quired as an input to the ICP algorithm.
As was previously mentioned, two different solutions to the PnP
problem are evaluated. The first method is a non-iterative solu-
tion proposed by (Lepetit et al., 2009), who tried to express the
n 3D points as a weighted sum of four virtual control points. In
this way, according to the author, time complexity (which is lin-
early growing with n) is significantly reduced to a O(n) time.
In the second approach, non linear Levenberg-Marquardt opti-
mization algorithm was used for minimizing the sum of square
distances between the observed points and calculated projected
points. From the 2D ↔ 3D correspondences, 3D points are con-
sidered to be error-free while 2D points should be compensated
for lens distortions. If that was not true, camera pose would be
computed based on undistorted points which is not trivial.

2.3 Bundle Block Adjustment

Bundle is defined as a bundle of rays that span in 3D space start-
ing from the center of the cameras, going through the image
points and intersecting in space. The problem that occurs from
the intersection of rays in space is that they do not meet at an
optimal point (best intersection of the corresponding rays). Thus,
bundle adjustment deals with the rearrangement of the camera po-
sitions and 3D points in order to achieve an optimal intersection
of the rays in 3D space. In practice, that is interpreted by trying
to minimize the distance between the measured points on the im-
ages and the ones that are back projected from the rearrangement
of the cameras and reconstructed points (Figure 1). This is math-
ematically expressed as:

min
P̂i,X̂j

m∑
i=1

n∑
j=1

∥∥∥xij , P̂iX̂j

∥∥∥2

, x̂ij = P̂iX̂j (5)

where xij is the image point j on image i, P̂i is the 3× 4 projec-
tion camera matrix corresponding to the ith image and X̂j is the
corresponding 3D point. In case of planar 3D objects, such as an
ordinal chessboard, the position of the 3D points is precise and er-
ror free. Each projection camera in general has 11DOF and every
3D point has 3DOF. Within this work, a general form projection
camera matrix is used ( > 11 DOF) in which the calibration ma-
trix also incorporates the lens distortion parameters. Fixing the
position of the 3D points, minimization is over 15m parameters
(6 exterior and 9 interior) where m the number of views.
Let f(p) be a function that relates a parameter vector p, with an
estimated measurement vector x̂ = f(p), x̂ ∈ <2. The estimated
measurement vector contains the corrected pose parameters de-
fined from the optimization of the bundle of arrays and f(p) is a
function that has as arguments of p the parameters of the cameras.
Therefore p is of the form:
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Figure 1: The reprojection error

p = [P1, P2, . . . , Pn, X1, X2, . . . , Xm] (6)

where Pi is the 3 × 4 projection camera matrix over n number
of cameras and Xi are the 3D ground control points (chessboard
points) which remain invariant throughout all the bundle process.
An initial parameter vector p0 and measurement vector x (ob-
served image points) are required for finding a vector that best
satisfies the functional relation, meaning finding the values of
this vector that will locally minimize the objective function. As a
stopping criterion, we define the error between the observed and
calculated values, which has to be minimized (refer to relation 5).
Using the Gauss − Newton non linear least square approach,
the mathematical model is defined as follows:(

JTJ
)
δP = −Jεp (7)

where J is the Jacobian matrix defined as J = ∂f(p)
f(p)

, δp is the
corrected measurement vector and εp is the error between the ob-
served and calculated measurement vectors x − x̂. For further
reading refer to (Hartley and Zisserman, 2004) and (Luhmann,
2011).

2.4 Iterative Closest Point (ICP)

The Iterative Closest Point (ICP) algorithm is a widely used al-
gorithm for registering two 3D datasets. Within the algorithm,
one point cloud acts as the reference cloud (also known as tar-
get), while the other one, known as source, is transformed to best
match the reference. That involves an iteration process in which
the source cloud would undergo a rigid transformation (that im-
plies translation and rotation) for minimizing the distance to the
reference point cloud. In mathematical notation, ICP could be
given in the form of a pseudo code as seen in algorithm 1. For
further details of the algorithm refer to (Besl and McKay, 1992).
Using the same notation as in the pseudo algorithm for the source
dataset(P ) and target dataset(M ), the rigid relative transforma-
tion RMP given as an initial guess for the ICP is defined as:

RPM = RM
TRP

TPM = RM
T (TP −RM )

(8)

whereRP ,RM express the rotation matrices that rotate the source
and target clouds to the world system and TP , TM express the po-
sition of the clouds within the world system.

Algorithm 1 Iterative Closest Point (ICP) algorithm

Require: P (source) andM (target) datasets
Ensure: Transformation (R′, t′), Error ε

1: R′ ← I , t′ ← 0, ε←∞
2: while (ε > threshold) do

3: Y ← {m ∈M | p ∈ P : m = cp(p)}

4: (R, t, ε)← min
R,t

np∑
k=1

|yk −Rpk − t|2

5: P ← R · P + t
6: R′ ← R ·R′
7: t′ ← R · t′ + t

8: end while

2.5 People Detection and Tracking

Detecting people in a point cloud is a current research topic for
many scientists. Within this work, detection of people is based on
previous work introduced in (Amplianitis et al., 2014), where cur-
rent foreground is extracted by detecting the spatial differences
between the computed OcTree of the static background and the
OcTree of the current cloud.
In the tracking part, Kalman filter was used to predict the next tar-
get location of the person. Initialization of the tracking was done
by extracting the convex hull of the body silhouette and comput-
ing the mean from it. Every person was detected and tracked
independently by every sensor.

3 EXPERIMENTAL RESULTS

The experimental part is divided into three sections: First section
is a description of the room used for testing and evaluating the
detection and tracking algorithm. Second section provides results
coming from the internal calibration process of each Kinect sen-
sor. In the third section, an evaluation of the bundle adjustment
accuracy and the ICP algorithm are given based on the initial
camera pose parameters computed by the algorithms explained
in section 2.2. Finally in the fourth section, we demonstrate some
tracking results of moving people in the scene and discuss the ac-
curacies.
For chariness within this section, additional tables and graphs
have been appended in an Appendix section.

3.1 Camera configuration and hardware

Our experimental setup consists of four RGB-D Microsoft Kinect
sensors mounted on a aluminium construction as depicted in fig-
ure 2. The space within the aluminium construction has dimen-
sions of approximately 4.5×2.2×2.3 depth, width and height re-
spectively. Data acquisition was done from all cameras in parallel
with an acquisition rate of ≈ 19 fps. One of the main drawbacks
of using multiple structured light sensors is the drastic reduction
of the quality of the depth images due to the intersection of their
near-infrared light in space. Therefore, all sensors where oriented
looking towards the center of the scene and the amount of over-
lapping was restricted only in the lower part of the field of view
(FOV).
Giving some technical characteristics of the Kinect sensor, it looks
like a horizontal elongated bar, connected on a base with a motor-
ized pivot and consists of two cameras and one infrared emitter.
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The depth is produced by projecting a known pattern onto the
scene by the infrared emitter and then infer depth from the de-
formation of that pattern recorded by the infrared image. The
resolution of the RGB and depth images is 640× 480 pixels and
so the generated point cloud has an organized form of 307200
points. Best working limit without introducing artifacts is within
the range of 1.2 and 3.5 meters.
Concerning hardware performance, a computer with an Intel Core
i7-3770 processor, 16GB RAM and a Samsung 840 Pro SSD was
used. Although good hardware is essential for these kinds of ap-
plications, real time detection and tracking would require extra
hardware performance and software optimization.

Figure 2: Aluminium construction with mounted Kinects sensors

3.2 Calibration

There are several libraries (eg. OpenNI, FreeKinect) which pro-
vide out-of-the-box calibration parameters of the Kinect sensor.
Nevertheless, for achieving maximum possible accuracy of the
generated point clouds (implying better 3D tracking results), a
more precise calibration is required. Main advantage of the Kinect
sensor is that it uses low distortion lenses with faintly apparent
displacement errors around the corners/edges of the images. The
calibration process was conducted in the following manner: as
a 3D object, a well defined chessboard pattern was used with
a chessboard size of 2cm and inner dimensions of 5 × 7 rows
and columns respectively. Since infrared and RGB sensors can-
not work simultaneously, they were switched on and off continu-
ously (a switch lasts 0.5 seconds), in order to acquire roughly the
same chessboard data, from different perspectives. Detection and
acquisition of chessboard points was done in a live mode using
OpenCV’s chessboard corner detector, which also provides sub-
pixel accuracy. To avoid any disturbances of the speckles com-
ing from the infrared emitter in the infrared camera, the emitter
was covered with tape and a external light was used for detect-
ing the chessboard corners. A total amount of 100 images was
acquired and splitted using a random selection algorithm in 10
different sets of 24 images each, in which the calibration was
performed independently from other sets. Applying (Zhang and
Zhang, 1998) algorithm stated in section 2.1, internal calibration
results are given in tables 3 and 4 of Appendix A. The overall
RMS for the infrared and RGB camera respectively for each cam-
era is given in table 1. As was expected, the RMS is within the
range of almost a quarter of a pixel for every sensor significantly
outperforming in quality the RMS default results provided by the
default Kinect parameters (0.34px for IR and 0.53px for RGB

camera). Figures 6 and 7 from Appendix A show the radial sym-
metric curve of the infrared and RGB lenses of every Kinect sen-
sor expressed by the principal point. It is clear that the radial
distortion almost follows a constant zero effect for most of the
distances and starts effecting the points’ displacement only to-
wards the edges of the image (less of half a pixel in the extreme
regions in both infrared and rgb sensor). Moreover, the decen-
tering distortions parameters provided by table 4 in Appendix A
have very small values clearly proving the quality and stability of
both infrared and RGB lenses.

Sensor Type A B C D
IR 0.1711 0.2171 0.2079 0.3357

RGB 0.2284 0.2409 0.2162 0.2157

Table 1: Calibration RMS error for IR and RGB sensor (in pixels)

3.3 Single camera orientation and bundle adjustment

Solving a bundle block adjustment system requires good initial
approximated values for internal and external parameters of all
sensors. As was mentioned in section 3.1, all four RGB-D sensors
are mounted in a way that would be quite complicated for a per-
son to empirically provide sufficient initial guess. One solution
to the problem was to use the well known Direct Linear Transfor-
mation (DLT) algorithm but for planar objects such as the chess-
board, DLT would fail due to its coplanarity constrain. Therefore,
approaches such as PnP −LM and EPnP that are designed to
retrieve the pose of a camera from planar objects where consid-
ered (refer to section 2.2).

Figure 3: Optimized reprojected image points

ID A B C D
PnP - LM 0.240 0.247 0.255 0.231

EPnP 0.463 0.432 0.389 0.372

Table 2: Kinects reprojection error for initial pose estimation (in
pixels)

Full ground control points were generated from the chessboard
with their Z value set to zero.
Making use of this form of a reference object has its advantages
and disadvantages. Main advantages are that it is easily portable
in indoor environments, can easily be used as a reference object
for orienting a set of cameras and also provides error free ground
control points. On the other hand, coplanar objects lack of spatial
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Figure 4: Final result of ICP fusion. Left figures shows two people standing and iteracting whears in the right figure two are sitting and
chatting

distribution information and introduce several geometrical con-
strains. Acquiring the pattern from all four sensors simultane-
ously and running the algorithms discussed in section 2.2 the re-
sultant reprojection errors are given in table 2 which can also be
seen in figure 3.
The generation of point clouds is performed using Kinects’ depth
and RGB image: the depth information is used to produce the 3D
points, which are then textured using RGB information.
Mathematically this is expressed by finding the rotation and trans-
lation parameters (3D rigid transformation) between the two cam-
era systems which can be computed through a classical stereo
calibration procedure. Knowing the focal length, principal point
and radial distortion parameters, every 3D point (expressed now
in the RGB camera system) can be projected on the RGB im-
age, interpolate the color and assign it to the point (Khoshelham,
2011). Therefore, it is clear that the rest of the working pipeline
will be based on point clouds orientated with respect to the RGB
camera system rather than the infrared.
Considering all exterior and interior parameters as unknown for
each sensor, a bundle block adjustment was applied for refining
these parameters so that the condition 5 is met. Setting a con-
vergence condition of 0.0001m as a minimum distance between
observed and calculated points, both PnP − LM and EPnP
converged after 3 iterations and returned a σo of 0.00029 and
0.00032 respectively. It is clear that both methods provide sim-
ilar pose parameters and therefore explains the minimal correc-
tions bundle adjustment did on the initial values. Results of point
clouds translated and oriented with respect to the world chess-
board system are given in figure 4. Left figure shows the complete
fused cloud together with the presence of two people interacting
with each other. As can be seen, both human are represented as
a solid body. Equivalent results are also given by the right figure
with two people sitting on a chair.
Given as initial guess the relative transformation between two
pair-wise clouds, AB and CD, based on equation 8, ICP was
performed only once for the first frames of a scene and remained
fixed for the rest. The number of iterations given as a converging
conditions were 500, with an epsilon of 1× 10−8 and maximum
correspondences’ distance of 5cm. For the first pair, AB, the
score of convergence was 0.017m, whereas for the second pair,
CD, the convergence was 0.048m. In both cases, the fusion was
done quite fast and with a very good error fit.

3.4 Human detection and tracking

As was stated in section 2.5, moving objects are extracted from
all sensors independently and in a parallel process. Knowing the
refine relationship between the sensor pairs A − B and C −
D (coming from ICP), all foreground points extracted indepen-
dently from each sensor are now transformed in the same coordi-
nate system. As a result, when a person is currently in the scene,
all points corresponding to him will move in the same direction.
Pay notice that random error and point density play a significant
role in the accuracy of the foreground. The further away a person
is from a sensor, the larger the random error is generated from
that sensor. Also, the density of a point is inversely proportional
to the square distance from the sensor, which also explains the
reduction of density resolution in larger depths. Thus, people be-
ing closer to a sensor will contain points from that sensor with a
higher density and accuracy and vice versa.

Figure 5: Trajectories of a person as produced by each sensor

For every sensor, an independent trajectory of a human was pro-
duced. An approximated center of gravity of a person was de-
rived by extracting the convex hull from all points corresponding
to him and computing the mean as proposed in section 2.5. This
was also important for initializing the Kalman filter. Figure 5
shows the trajectory of a person generated from all four RGB-D
sensors. As can be seen, all trajectories follow the same root and
direction of the body with some deviation between them. That
is due to noisy foregrounds affecting the size of the convex hull
and therefore the position of the center of gravity. Projecting the
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trajectory coordinate elements into three separate planes, an anal-
ysis of each dimension is accomplished individually. Figures 8, 9
and 10 from Appendix B show the amount of variation for each
coordinate component independently with the larger offsets vis-
ible in the Z axis. That clearly shows that the fluctuation in the
size of the convex hull mostly effects the Z direction and less the
X and Y.

4 CONCLUSIONS

We performed a processing chain for demonstrating how calibra-
tion, bundle adjustment and ICP can affect a multiple RGB-D
human detection and tracking system. Pre-calibration of every
Kinect sensor is an essential step for rectifying the RGB and IR
images and producing high quality point clouds. Although the
correction of infrared and RGB images is mostly in the extrema
regions, this could significantly affect the position of a moving
object in the scene, depending on the distance of the object from
each sensor. Planar single pose camera estimators have shown
that although they have small orientation differences, they don’t
lack of accuracy and that was immediately proven by perform-
ing a bundle block adjustment. Given as initial values the results
coming from the single camera pose estimators and setting all in-
ternal and external parameters as unknowns to the bundle (except
ground control points) the algorithm would converge after very
few iterations achieving a σo of less than a mm. Giving as ini-
tial guess a 3D rigid transformation to ICP for every pair of point
clouds, the fitting score for both pairs was within cm accuracy,
clearly proving the necessity of all aforementioned procedures.
In the detection and tracking part, generated trajectories of mov-
ing people were shifted one another due to the accuracy of the
foreground and therefore the tracked center of gravity.

5 DISCUSSIONS

Presented work could serve well as a solid foundation of evaluat-
ing multi RGB-D camera systems. Human detection and tracking
in a point cloud is still an unexplored area with not much work
introduced by the research community. Therefore, improving our
current implementation and refining foreground masks could sig-
nificantly improve the accuracy of the tracks. Optimal goal in-
volves having a unique trajectory for every person in the scene
produced by the confidence of the intermediate tracks generated
from each sensor.
Time performance is also a very crucial factor for our algorithm.
Using GPU programming could significantly improve our algo-
rithmic workflow and bring it closer to a more real time appli-
cation. On the other hand, RT applications would require hav-
ing one computer per sensor, due to the amount of computational
power needed to manage all devices simultaneously.
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APPENDIX

Appendix A: Calibration results

Figure 6: Radial symmetric distortion curves for all IR sensors
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Figure 7: Radial symmetric distortion curves for all RGB sensors

ID cx cy xo yo

R
G

B

A 569.833 569.117 335.038 259.227
B 569.220 569.198 323.839 260.600
C 586.786 585.971 327.520 240.808
D 591.379 591.084 330.742 241.404

In
fr

ar
ed

A 511.908 510.640 330.890 259.780
B 497.488 497.568 326.354 267.325
C 516.212 516.059 324.874 246.470
D 521.307 520.709 323.213 242.130

Table 3: Infrared and RGB camera internal parameters (in pixels)

ID k1 k2 p1 p2 k3

In
fr

ar
ed

A -0.1648 0.7673 0.0069 0.0064 -1.3135
B -0.1480 0.6950 0.0079 0.0017 -1.2501
C -0.0992 0.2648 0.0022 -0.0036 -0.2833
D -0.1933 1.1570 0.0002 0.0039 -2.4079

R
G

B

A 0.0288 -0.1249 0.0070 0.0056 -0.0506
B 0.0093 -0.1718 0.0124 0.0048 0.1517
C 0.0803 -0.4595 0.0072 -0.0008 0.5304
D 0.0187 0.0259 -0.0009 0.003 -0.2990

Table 4: Infrared and RGB camera lens distortion parameters (in
pixels)

ID Tx Ty Tz Rx Rx Rx

A -2.16 0.01 0.78 0.9370 0.2804 -0.3862
B -2.68 0.41 -0.63 0.8422 0.0489 0.1004
C -1.84 -0.73 -0.09 0.536 -2.6761 -0.2824
D -2.01 0.11 -0.19 -0.1178 0.4829 0.2939

Table 5: Translation (cm) and rotation (deg) parameters between
RGB and IR camera

Appendix B: Detection and tracking

Figure 8: Variation of the trajectories along the X axis

Figure 9: Variation of the trajectories along the Y axis

Figure 10: Variation of the trajectories along the Z axis
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