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ABSTRACT: 

 

To delineate the geological formation at the surface, satellite image classification approaches are often preferred. This study aims to 

produce a super resolved map with better delineation of the litho-contacts from the medium resolution Landsat image. 

Conventionally used per-pixel classification provides an output map at the same resolution of the satellite image, while the super 

resolved map provides the high resolution output map using the medium resolution image. In this study, four test sites are considered 

for delineating different litho-contacts using super resolution mapping approach in Cuddalore district, southern India. The test sites 

consists of charnockite, fissile hornblende-biotite gneiss, marine sandstone and sandstone with clay, limestone with calcareous shale 

and clay, clay with limestone bands/lenses, mio-pliocene and quaternary argillaceous and calcareous sandstone, fluvial and fluvio-

marine formations. This work compares the per-pixel, super resolved output derived from linear spectral unmixing (LSU) based 

HNN and spectral angle mapper (SAM) based HNN approaches. The super resolution mapping approach was performed on the 

medium resolution (30m) Landsat image to obtain the litho-contact maps and the results are compared with the existing maps and 

observations from field visits. The results showed improved accuracy (90.92%) of the map prepared by the SAM based super 

resolution approach compared to the LSU based super resolution approach (90.14%) and the maximum likelihood classification 

approach (83.74%). Such an improved accuracy of the super resolved map (6m resolution) is due to the fact that the lithological 

mapping is done not merely at the resolution of the image, but at the sub-pixel level. Hence, it is inferred that super resolution 

mapping applied to multispectral images may be preferred for mapping lithounits and litho-contacts than the conventional per-pixel 

and sub-pixel image classification methods. 

 

 

                                                                 
 

1. INTRODUCTION 

Visual interpretation of multispectral and hyperspectral satellite 

images has long known to be a potential technique for 

lithological and litho-contact mapping. Many instances of 

updation of the existing geologic maps by satellite image 

interpretation have been reported from around the world 

(Krishnamurthy, 1997; Hadigheh and Ranjbar, 2013). 

Classification approaches are often preferred to delineate the 

geological formation at the surface using satellite images. 

Though this is an accepted approach, the coarse spatial 

resolution of many satellite images leads to inaccurate portrayal 

of the litho-contacts. This issue was addressed in the late 80s 

and spectral unmixing/sub-pixel classification was suggested as 

a classification approach to overcome such limitations 

(Sanjeevi, 2008). Later, it was realized that spectral unmxing 

techniques can only result in resolving the sub-pixel issue but 

cannot resolve the location of the classes within a pixel. This 

lacuna resulted in the evolution of the super resolution approach 

which not only identifies the number of classes within a coarse 

resolution pixel, but also exactly specifies the location of 

classes within a pixel (Atkinson, 2005).  

This paper reports a study which aims to produce a super 

resolved map with better delineation of the litho-contacts from 

the medium resolution Landsat image. The conventionally used 

per-pixel classification provides an output map at the same 

resolution of the satellite image, while the super resolved map 

provides the higher resolution output map using the medium 

resolution image. In this study, four test sites in Cuddalore 

district, southern India are considered for delineating the 

different litho-contacts by the super resolution mapping 

approach.  

Super resolution mapping (SRM) is achieved by integrating 

linear spectral unmixing (LSU) and spectral angle mapper 

(SAM) with the Hopfield Neural Network (HNN) approach. 

The end-member pixels representing the lithological units were 

identified by the pixel purity index method. These end-member 

pixels were used to generate the fraction images and the 

distance measure images by the LSU and SAM technique 

respectively. These fraction images and the inverse distance 

measure images are given as inputs to the HNN based super 

resolution mapping. The 30m resolution Landsat TM image 

resulted in a super resolved output of 6m resolution that clearly 

delineates most of the litho units and litho-contacts in the study 

area. 

This work also compares the per-pixel output and super 

resolved output derived from the LSU-based SRM technique 

and the SAM-based SRM technique. The quality of the outputs 

(lithologic maps) from the LSU and SAM based super 

resolution mapping approaches, performed on the medium 

resolution (30m) Landsat images, is evaluated by comparing 

with the existing geological maps and from observations made 

during the field visits.  

 

2. PREVIOUS STUDIES 

Lithological mapping has been attempted using remote sensing 

techniques such as FCC, PCA, colour transformation etc. 
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(Krishnamurthy, 1997). It is presently done using supervised 

per-pixel classification (Bishta et al, 2013) and band ratio 

techniques (Madani and Emam, 2011). Mineral abundance 

mapping applications are now being attempted by sub-pixel 

classification such as linear spectral unmixing (Sanjeevi, 2008). 

Landsat Thematic Mapper (TM) imagery has been used for 

mineral mapping and exploration because the two shortwave 

infrared (SWIR) bands are useful for predicting alteration 

mineral associations (Sabine, 1997).  

Hadigheh and Ranjbar (2013) compared MLC, SAM and SID 

for lithological mapping from ASTER and IRS data in the 

Eastern part of the central Iranian volcanic belt. The authors 

preferred MLC (Maximum Likelihood Classification) than 

SAM (Spectral Angle Mapper) and SID (Spectral Information 

Divergence) classification approaches in their study.  

Zhang and Pazner (2007) applied maximum likelihood 

classification for ASTER, Hyperion and Landsat ETM data in 

the Southeastern Chocolate Mountains, USA. To get an 

accurate lithology maps, Zhang and Pazner, (2007) suggested 

that it requires high resolution spatial and spectral information 

and extensive field surveys.  
 

3. STUDY AREA 

Four test sites in Cuddalore district, southern India are 

considered for delineating the different litho-contacts by the 

super resolution mapping approach. The study sites consist of 

charnockite, fissile hornblende-biotite gneiss, marine sandstone 

and sandstone with clay, limestone with calcareous shale and 

clay, clay with limestone bands/lenses, mio-pliocene and 

quaternary argillaceous and calcareous sandstone, fluvial and 

fluvio-marine formations. The Cuddalore sandstone of mio-

pliocene age is surrounded by cretaceous formations of clay and 

limestone, recent fluvial and fluvio-marine formations (Figure 

2).The robustness of the classification approach is evaluated by 

choosing study sites in such a way that there exists more than 

one lithotype in each site.  

 

4. DATA USED 

The multispectral Landsat 5 TM (Thematic Mapper) for 

classification approaches such as per-pixel, sub-pixel and super 

resolution mapping. Landsat TM image has the spatial 

resolution of 30m and 7 number of bands (Table 1). Landsat 

images are atmospherically corrected and georeferenced images. 

Bands 6 of Landsat image is not considered in this study due to 

its incompatible spatial resolution (b6=120m).  

 

Parameters Landsat 5 TM 

Spectral Range 0.45-2.35 

Spatial Resolution 30m 

Swath Width 185Km 

Spectral Resolution 190-250nm 

Spatial Coverage Non-continuous 

Total number of bands 7 

Date of Acquisition of image 25th August 1991 

Table 1.  Sensor specification of Landsat 

Figure 2. Geological map of the study area (GSI, 1995) 

 

5. METHODOLOGY 

In this work, super resolution mapping is achieved by 

integrating linear spectral unmixing (LSU) and spectral angle 

mapper (SAM) with the Hopfield Neural Network (HNN) 

approach (Figure 3). The end-member pixels representing the 

lithological units were identified by the scatterplot method 

(Schowengerdt, 1997). These end-member pixels were used to 

generate the fraction images and distance measure images by 

the LSU and SAM technique respectively. These fraction 

images and the inverse distance measure images are given as 

inputs to the HNN based super resolution mapping. 

Figure 1. Location of study area depicting the four sites in the Cuddalore region, southern India 
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Figure 3. Flowchart depicting the methodology of the study 

 

6. PER-PIXEL CLASSIFICATION 

Per-pixel classification assumes that each pixel represents a 

single land cover class or lithotype only. It ignores the mixed 

pixel problem. In per-pixel classification (or hard classification) 

algorithms, each pixel is individually grouped into a certain 

category. Per-pixel classifiers develop a signature by combining 

the spectra of all training set pixels for a given feature. Per-pixel 

or hard classification can give high accuracy only if the scene is 

homogeneous or the image used is of high spatial resolution so 

that a single pixel consists of a single class. 

Maximum likelihood classification assumes that the statistics 

for each class in each band are normally distributed and 

calculates the probability that a given pixel belongs to a specific 

class. Each pixel is assigned to the class that has the highest 

probability (Jenson, 1986).The maximum likelihood classifier 

(MLC) has long been used by many authors in the field of 

geological mapping (Rowan and Mars, 2003), agriculture 

(Heller & Johnson 1979, Keene & Conley 1980), landcover 

mapping (Yuan and Elvidge 1998), urban mapping (Ridd 1995, 

Jensen and Cowen 1999), water body/ wetland mapping 

(Ramsey and Laine 1997, Lunetta and Barlogh 1999). Most of 

the authors have mentioned that the maximum likelihood 

approach was adopted because of its robustness, versatility, 

higher accuracy. 

 

7. SUB-PIXEL CLASSIFICATION INPUTS 

7.1 Linear Spectral Unmixing 

Spectral mixing occurs either during image acquisition or 

resampling. In higher resolution images, the percentage of 

mixed pixels may reduce but they still occur in the boundary 

pixels. Linear spectral unmixing is used to infer the proportions 

of the pure components that gave rise to the mixed pixel. The 

mixed pixels can be spectrally unmixed through various 

techniques such as linear spectral unmixing (Settle & Drake 

1993; Sanjeevi 2008); fuzzy c means classification (Foody 

1996) and fuzzy supervised classification (Zhang & Foody 

2001).  

The steps involved in linear spectral unmixing are: 

1. Selection of appropriate End members 

2. Unmix the image by Linear Spectral Unmixing. 

3. Generation of fraction Images. 

Equation (1) represents the linear mixing model for a 

pixel in an image with i number of bands. 

      (1) 

where: 

Ri is a composite reflectance of the mixed spectrum in band i; 

Fj is a fraction of end-member (j) in the mixture; 

Rf  is a reflectance of that end-member in band i; 

n is number of end-members; 

e is an error in the sensor band i;    

Based on the above equations, Linear Spectral Unmixing 

technique is applied to the Landsat TM image and the fractions 

of rock types in each pixel is computed.  
 

4.1.1 Fraction images: The abundance of classes in each pixel 

can be shown in the form of fraction images. The end-member 

pixels are chosen from the scatter plot of PC1 vs PC2 

(Schowengerdt 1997). The appropriate end-member spectra for 

each class must be chosen in such a way that the fraction image 

depicts the exact abundance of the class within the pixel. The 

brighter pixel in the fraction image indicates the presence of 

larger proportion of the class in the pixel and the darker pixel 

indicates the presence of small or no proportion of class in that 

pixel. These fraction images are the input for LSU based SRM. 

7.2 Spectral Angle Mapper 

SAM is a spectral classifier that utilizes an n-D angle to match 

pixels to the reference spectra (Kruse et al 1993). The algorithm 

determines the spectral similarity between two spectra by 

calculating the angle between the spectra and treating them as 

vectors in a space with dimensionality equal to the number of 

bands. SAM compares the angle between the end-member 

spectrum vector and each pixel vector in the n-D space. 

The spectral set of a satellite image is given as X={x1, x2…, xn} 

⊂ Rq, the reference spectral set r= {r1, r2.., rc} ⊂ Rq, both x and 

r are the non-zero vector, where q is the number of spectral 

bands, n is the number of pixels, c is reference spectrum of the 

classes in the image. The spectral angle or spectral similarity 

measure (Beatriz et al, 2008), θcxn= {θki} (k=1,…,c, and 

i=1,…,n) between the pixel spectra xi and the reference 

spectrum rk is defined as:   

 θki= cos-1(xi·rk)/(||xi || ·||rk||)                   (2) 
 

Smaller angles represent closer matches to the reference 

spectrum. SAM algorithm uses only the vector direction and not 

the vector length (Liu and Yang, 2013). The result of the SAM 

classification is an image showing the best match at each pixel. 

Many authors used SAM for geological mapping (Rowan and 

Mars, 2003; Van Der Meer et al, 2010; Hadigheh and Ranjbar, 

2013). 

7.2.1 Inverse distance measure images: The spectral angle 

mapper provides a distance measure image, where a smaller 

distance indicates a closer match with the reference spectra, and 

a larger distance indicates no or lesser match with the reference 

spectra. This distance measure image indicating the closeness to 

the reference spectra is the inverse in appearance of the 

abundance image. Here the darker pixel indicates the high 

abundance and brighter pixel represents the low abundance of 

the land cover class in that pixel.  
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For obtaining the area proportion or abundance image, the 

distance measure is inverted (Equation 3). This inverted 

distance measure image of SAM is used as an input for the 

HNN based SRM.  

 Inverse distance image=1-float (Distance measure image)   (3) 

 

8. SUPER RESOLUTION MAPPING  

In this work, super-resolution mapping is achieved by 

integrating the linear spectral unmixing and spectral angle 

mapper with the Hopfield Neural Network approach. Hopfield 

Neural Network is a feed-forward and fully connected recurrent 

neural network wherein each neuron is modeled using an input 

and a sigmoidal activation function. The Hopfield network can 

be used for energy minimization problems if the weights and 

biases are arranged such that they describe an energy function, 

with the minimum of energy occurring at the stable state of the 

network (Tatem et al, 2002).  
 

Mapping the spatial distribution of class components within 

each pixel is formulated as a constraint satisfaction problem 

with an optimal solution determined by the minimum of the 

energy function. From the Landsat image at 30m spatial 

resolution, a set of proportion images for each rock type is 

obtained by the linear spectral unmixing. The flowchart for the 

super-resolution mapping approach is given in Figure 4. Each 

pixel in the image input into the neural network is to be 

processed by a set of 5 X 5 (25) neurons. The network for each 

pixel processing is constructed with 25 neurons, since a zoom 

factor of 5 is adopted. 

The neurons are given an initial value as follows:  

If a pixel has an area proportion for a particular landcover class 

as 100%, all neurons are given a value of 0.55. Similarly, if a 

pixel has an area proportion for particular landcover class as 

50%, 13 neurons are given a value of 0.55 and 12 neurons are 

given a value of 0.45. The concept of spatial order within and 

outside a pixel is the basis for determining the energy of the 

network. The point at which minimum energy occurs is the 

stable state of the network. The neuron outputs at this point 

determine the best accurate map of the given image. The 

network energy function based on the goal and constraints of 

the sub-pixel level mapping task given in Equation (4) as:  
  

 E = - ∑ ∑ (k1G1 + k2G2 +k3P+k4M     (4) 
 

where k1, k2, k3 are constants weighting the various energy 

parameters taken a value of 1; G1 and G2 are output values for 

neuron of the two objectives (or) goal functions; P is the output 

value for neuron of the proportion constraint; M is the output 

value of the neuron for multi-class constraint, 

, where  is the average 

output of jth class for sub-pixel at position (i,j). 

The first goal function is given in Equation (5) as: 

G1(i,j)=floor(1+tanh(average(surrounding 8 neurons output)-

0.5))) * (neuronoutput(i,j) – 1.0               (5) 
 

This goal function aims to increase the output of the central 

neuron to 1 if the average output of the surrounding eight 

neurons was greater than 0.5. If the averaged output of the 

neighboring neurons is less than 0.5, the goal function evaluates 

to 0, and has no effect on the energy function. If the averaged 

output is greater than 0.5, the goal function evaluates to 1 and 

the neuron output controls the magnitude of the negative 

gradient output, with only neuron output of 1 producing a zero 

gradient. A negative gradient is required to increase the neuron 

output, when the output = 0 and the mean of surrounding 8 

neurons is greater than 0.5. 

  

 

Figure 4. Flowchart depicting the methodology for Super 

resolution mapping of multispectral satellite images 
 

The second goal function is given in Equation (6) as:  
 

G2(i,j) = (1-floor(1+tanh(average(surrounding 8 neurons 

output)-0.5))) * neuronoutput(i,j)             (6) 

 

This goal function aims to decrease the output of the central 

neuron to 0, given that the average output of the surrounding 

eight neurons was less than 0.5.The tanh function evaluates to 0 

if the averaged output of the neighboring neurons is more than 

0.5. If it is less than 0.5, the function evaluates to 1 and the 

central neuron output controls the magnitude of the positive 

gradient output. If the neuron output = 0, the second goal 

function produces a zero gradient. 

 

P=floor((1+tanh〖(neuronoutput(i,j)-0.5)))-p(i,j)〗       (7) 

 

where, p(i,j) is the estimated proportion 

A positive gradient is required to decrease the neuron output 

when the neuron output is 1 and the average of the surrounding 

eight neurons is less than 0.5. 

When neuron output=1 and average of surrounding 8 neurons is 

greater than 0.5, G1=0. 

When neuron output=0 and average of surrounding 8 neurons is 

less than 0.5, G2=0. 

Energy = G1 + G2 = 0 

 

This energy function satisfies the objective of the super-

resolution mapping task, while also forcing the neuron output to 

either 0 or 1 to produce a bipolar map of the given image. The 

proportion constraint is used to check whether the area 

proportion estimate of each pixel of the input image is 

maintained during the energy minimization process (super-

resolution mapping task). A positive P value (Equation 7) is 
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produced if proportion estimate exceeds the actual value and a 

negative P value is produced if proportion estimate is less than 

the actual value. When the proportion estimate is equal to the 

actual initial value, P=0 and E=0. The super resolved fraction or 

proportion image is obtained for each class. This proportion 

image produces the super-resolved classified map. The above 

steps and equations are scripted in MATLAB® environment.  
 

9. RESULTS AND DISCUSSIONS 

9.1 Results of MLC 

It has been emphasized many times that per-pixel classification 

assumes that each pixel represents a single land cover class only 

and it ignores the mixed pixel problem. Per-pixel or hard 

classification can give high accuracy only if the scene is of 

homogeneous nature or the image used is of high spatial 

resolution, so that a single pixel consists of a single class. In 

this study, maximum likelihood classifier (MLC) is used. The 

maximum likelihood classifier has long been used by many 

authors in the field of geological mapping (Rowan and Mars, 

2003; Hadigheh and Ranjbar, 2013) but acceptable results have 

not been obtained. MLC results for the four test sites show the 

crisp output at 30m resolution where it is unable to delineate the 

exact boundary between the lithotypes.  

 

9.2 Results of LSU based SRM 

The results of LSU as the input for super-resolution mapping of 

LANDSAT image for four sites are shown in Figure 5 and 6. It 

can be seen from the fraction images that regions fully occupied 

by a litho-type are represented by bright pixels, while in the 

mixed pixels, those that have another litho-type are represented 

by dark or black pixels. The boundary pixels or mixed pixels 

that fail to delineate the litho-contacts in per-pixel 

classification, exhibit varying shades of grey, indicating the 

presence of other litho-types in these pixels.  

Though the abundance of the lithotypes in the boundary is 

correctly quantified, the vegetation cover in some areas is 

misclassified as a lithotype. The results show that the accuracy 

of SRM from LSU depends on the end- members and the 

number of classes present within the scene. The LSU works 

well when the PC scatter plot provided three end-member pixels 

with distinct spectral separability. The only limitation of the 

LSU is choosing appropriate end-members.  

 

9.3 Results of SAM based SRM 

The same training pixels were given as input for all the soft 

classification approaches. The proportion of litho-classes 

present in each pixel is given as the inverse distance image 

(Figure 5 and 6). The closeness of two or more classes results in 

similar inverse distance images for those classes. In the inverse 

distance image for a lithotype, brighter pixels indicate that they 

are spectrally closest to that class pixel given as input and the 

distance measure is inversely proportional to the abundance of 

class in the pixel.  

 

9.4  Accuracy assessment and validation 

Since this study involves evaluation of super-resolution 

mapping as a potential tool to accurately map the litho-contacts, 

it is pertinent that the classification has to be accurately 

performed. Hence, the first step could be to evaluate the 

accuracy of the classification (by comparing with existing 

lithology maps of the study sites), and the next step would be to 

check the validity of the results. The results of the accuracy 

assessment indicating the producer’s, user’s and overall 

accuracy, and kappa statistics for the three outputs from 

LANDSAT image for four different sites are provided in Table 

2. The results are validated by estimating the area for each 

lithotypes in the study sites (Table 3). Table 4 represents the 

error in estimation of areal extent of lithotypes from MLC, LSU 

based SRM and SAM based SRM approaches. It is also 

depicted in the form of graph as shown in Figure 7. The overall 

error indicates that SAM based SRM approach outperforms the 

LSU based SRM and the conventional MLC approaches. 

 

Site 
Litho 

-type 
MLC LSU based SRM 

SAM based 

SRM 

1 

 UA% PA% KS UA% PA% KS UA% PA% KS 

ACS 87.2 80.0 0.808 96.2 88.2 0.942 88.4 86.3 0.832 

CL 70.1 75.0 0.584 81.8 88.7 0.748 79.2 83.6 0.709 

S 81.2 82.0 0.694 91.1 92.0 0.854 90.1 88.4 0.834 

OA% 79.69 89.84 86.33 

2 

 UA% PA% KS UA% PA% KS UA% PA% KS 

FV 87.1 87.1 0.806 90.6 97.5 0.864 90.6 95.1 0.862 

SC 92.5 79.5 0.893 95.5 86.5 0.937 95.5 84.2 0.936 

CL 66.0 82.5 0.597 98.0 87.5 0.974 88.0 86.3 0.850 

OA% 84.38 92.58 90.63 

3 

 UA% PA% KS UA% PA% KS UA% PA% KS 

FWV 73.9 86.9 0.628 86.0 86.9 0.772 90.0 91.8 0.838 

SC 93.9 86.9 0.798 91.7 91.1 0.785 94.9 93.7 0.866 

OA% 86.91 89.45 92.97 

4 

 UA% PA% KS UA% PA% KS UA% PA% KS 

F 83.3 96.1 0.808 89.2 96.3 0.820 94.6 97.5 0.765 

FHG 86.8 57.5 0.464 86.8 67.7 0.688 90.6 81.4 0.877 

OA% 83.98 88.67 93.75 

UA-User’s Accuracy; PA-Producer’s Accuracy; OA-Overall Accuracy; 

KS-Kappa Statistics; ACS-Argillaceous and Calcareous Sandstone; 

CL-Clay with Limestone; S-Sandstone; FV-Fluvial with vegetation; 

SC- Sandstone with clay; FWV-Fluvial without vegetation sediments; 

F-Fluvial sediments; FHG-Fissile Hornblende Gneiss 

Table 2.  Accuracy Assessment for  per-pixel, LSU based SRM 

and SAM based SRM outputs 

Table 3. Comparison of areal extent of lithotypes mapped by 

various classification approaches 

10. CONCLUSIONS 

This study has demonstrated that the super resolution mapping 

approach outperforms the per-pixel classification approach in 

the context of litho-contact identification and mapping in a 

sedimentary terrain. An important factor that aided in accurate 

mapping and delineation of the lithounits and their contacts is 

the presence of the SWIR band in Landsat TM image data. The 

carbonate rich cretaceous formation exhibits SWIR absorption, 

while the iron rich lateritic mio-pliocene sandstone exhibits 

absorption in the NIR region. 

Site Lithotype 

Area estimated in Sq.Km 

MLC 
LSU based 

SRM 

SAM based 

SRM 

GSI 

Map 

1 

ACS 10.64 10.92 11.61 12.04 

CL 4.78 3.81 4.46 3.43 

SC 9.43 7.58 7.62 8.04 

2 

FV 16.01 16.69 17.22 17.67 

SC 8.28 7.54 7.07 6.68 

CL 0.19 0.21 0.15 0.12 

3 
FWV 8.74 8.16 7.55 7.15 

SC 16.01 16.58 17.19 17.59 

4 
F 14.57 16.82 17.88 18.71 

FHG 8.88 5.44 5.01 4.82 
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Site Lithotype 
Error in % 

MLC LSU based SRM SAM based SRM 

1 

ACS 1.6 9.3 3.5 

CL 39.3 11.1 30.02 

SC 17.2 5.72 5.22 

2 

FV 9.39 5.5 2.54 

SC 23.9 12.8 5.84 

CL 58.3 75 25 

3 
FWV 22.2 14.1 5.5 

SC 8.9 5.74 2.2 

4 
F 22.12 10.10 4.43 

FHG 45.7 12.86 3.94 

Average 25.86 16.21 8.82 

Table 4. Error in lithotype area estimation 

 

Figure 7.Graph depicting areal extent of lithotypes from various 

classification approaches  

 

The lithocontacts mapped by the SRM approach match well 

with the actual lithocontacts seen in the maps published by GSI 

(1995). The average error in the areal extent of the lithotypes 

computed by SAM based SRM is 8.82% compared to 16.21% 

and 25.86% of LSU based SRM and per-pixel respectively. 

Apart from accurate delineation of the lithocontacts, the 

accuracy of image classification is also better for the SRM 

(SAM-90.92%, LSU- 90.14%) approach than the MLC 

(83.74%) approach. Such an improved accuracy of the super 

resolved map (6m resolution) is due to the fact that the 

lithological mapping and litho-contact mapping is done not 

merely at the pixel level of the image, but at the sub-pixel level.  

Hence, it is inferred that super resolution mapping applied to 

multispectral images may be preferred for mapping lithounits 

and litho-contacts than the conventional per-pixel and sub-pixel 

image classification methods. 
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