
Biogeosciences, 12, 1339–1356, 2015

www.biogeosciences.net/12/1339/2015/

doi:10.5194/bg-12-1339-2015

© Author(s) 2015. CC Attribution 3.0 License.

Evaluation of coral reef carbonate production models at

a global scale

N. S. Jones1, A. Ridgwell1, and E. J. Hendy2,3

1School of Geographical Sciences, University of Bristol, Bristol BS8 1SS, UK
2School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK
3School of Biological Sciences, University of Bristol, Bristol BS8 1UG, UK

Correspondence to: E. J. Hendy (e.hendy@bristol.ac.uk)

Received: 7 August 2014 – Published in Biogeosciences Discuss.: 8 September 2014

Revised: 22 January 2015 – Accepted: 26 January 2015 – Published: 4 March 2015

Abstract. Calcification by coral reef communities is esti-

mated to account for half of all carbonate produced in shal-

low water environments and more than 25 % of the total car-

bonate buried in marine sediments globally. Production of

calcium carbonate by coral reefs is therefore an important

component of the global carbon cycle; it is also threatened

by future global warming and other global change pressures.

Numerical models of reefal carbonate production are needed

for understanding how carbonate deposition responds to en-

vironmental conditions including atmospheric CO2 concen-

trations in the past and into the future. However, before any

projections can be made, the basic test is to establish model

skill in recreating present-day calcification rates. Here we

evaluate four published model descriptions of reef carbon-

ate production in terms of their predictive power, at both lo-

cal and global scales. We also compile available global data

on reef calcification to produce an independent observation-

based data set for the model evaluation of carbonate bud-

get outputs. The four calcification models are based on func-

tions sensitive to combinations of light availability, arago-

nite saturation (�a) and temperature and were implemented

within a specifically developed global framework, the Global

Reef Accretion Model (GRAM). No model was able to re-

produce independent rate estimates of whole-reef calcifica-

tion, and the output from the temperature-only based ap-

proach was the only model to significantly correlate with

coral-calcification rate observations. The absence of any pre-

dictive power for whole reef systems, even when consistent at

the scale of individual corals, points to the overriding impor-

tance of coral cover estimates in the calculations. Our work

highlights the need for an ecosystem modelling approach,

accounting for population dynamics in terms of mortality

and recruitment and hence calcifier abundance, in estimat-

ing global reef carbonate budgets. In addition, validation of

reef carbonate budgets is severely hampered by limited and

inconsistent methodology in reef-scale observations.

1 Introduction

Coral reefs are the product of long-term CaCO3 accretion by

calcifying organisms of the reef community (e.g. Hatcher,

1997; Perry et al., 2008), principally scleractinian corals

and crustose coralline algae (CCA; e.g. Chave et al., 1972;

Barnes and Chalker, 1990; Kleypas and Langdon, 2006;

Mallela, 2007; Vroom, 2011). Coral reefs persist where net

CaCO3 accretion is achieved, i.e. where calcification by reef

organisms exceeds dissolution and bioerosion (reviewed by

Kleypas and Langdon, 2006; Fig. 1; Perry, 2011). Globally,

coral reef calcification accounts for ∼ 50 % of shallow wa-

ter (neritic) CaCO3 production (Milliman, 1993) with an es-

timated budget of 0.65–0.83 Pg of CaCO3 each year (Vec-

sei, 2004). Most of this annual global carbonate production

(Gglobal) is preserved and buried, and so coral reefs play an

important role in global carbon cycling (Vecsei, 2004) and

hence the control of atmospheric CO2.

Although the precise mechanisms by which calcification

occurs in both corals and coralline algae are still poorly un-

derstood (reviewed by Allemand et al., 2011), it is thought

that the rate of calcification is environmentally modulated

by some combination of seawater aragonite saturation state

(�a), temperature and light availability (Buddemeier and
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Figure 1. Schematic illustrating the coral reef carbonate budget and the modelled parameters (Greef and Gcoral) used to quantify carbonate

production. Carbonate framework is principally produced by scleractinian corals (Gcoral) and crustose coralline algae (CCA; Galgae); the

abiotic (inorganic) precipitation of carbonate cements (Gi) also occurs. Bioeroders break down the reef framework internally (e.g. worms,

sponges) and externally (e.g. parrot fish, crown-of-thorns starfish). The rubble produced is incorporated back into the framework, by cemen-

tation or burial, or exported from the reef. The observational data available to test models of carbonate budget include Gcoral measured from

coral cores, and Greef calculated from a reef community census or the total alkalinity of surrounding seawater.

Kinzie, 1976; Kleypas and Langdon, 2006; Tambutté et al.,

2011). As a result, it is anticipated that calcification on coral

reefs is sensitive to climate change and ocean acidification

(e.g. Kleypas et al., 1999; Erez et al., 2011; Hoegh-Guldberg,

2011) – in particular the reduction of �a due to ocean acid-

ification causing decreased calcification of individual corals

(reviewed by Kleypas and Yates, 2009; Andersson and Gled-

hill, 2013) and coralline algae (e.g. Anthony et al., 2008;

Johnson and Carpenter, 2012; Johnson et al., 2014), and ris-

ing sea surface temperatures causing an increase in coral

bleaching frequency due to heat stress (e.g. Donner et al.,

2005; Baker et al., 2008; Frieler et al., 2013).

The global reef carbonate budget (i.e. Gglobal) is inher-

ently difficult to evaluate because it is impossible to em-

pirically measure this variable; instead it must be extrapo-

lated from reef-scale observations. Vecsei (2004) synthesized

census-based measurements to produce values of reef calci-

fication rates (Greef; Fig. 1) – that varied both regionally and

with depth – to estimate Gglobal (0.65–0.83 Pg yr−1). In con-

trast, the earlier estimate of Gglobal (0.9 Pg yr−1) from Mil-

liman (1993) is calculated from two modal values for Greef

(reefs: 0.4 g cm−2 yr−1, lagoons: 0.08 g cm−2 yr−1). Opdyke

and Walker (1992) found a lower estimate of reefal CaCO3

budget of 1.4 Pg yr−1 derived from published Holocene

CaCO3 accumulation rates. Census-based methods calculate

Greef by summing the calcification by each reef-calcifier,

multiplied by its fractional cover of the reef substrate (Chave

et al., 1972; Perry et al., 2008). The calcification by indi-

vidual components of the reef community may be derived

from linear extension rates or published values for represen-

tative species (Vecsei, 2004). Often it is only calcification by

scleractinian corals (Gcoral) and coralline algae (Galgae) that

are considered, due to their dominance in CaCO3 production

(e.g. Stearn et al., 1977; Eakin, 1996; Harney and Fletcher,

2003). Calcification rates for portions of a reef (e.g. reef flat

or back reef) can also be calculated from the total alkalin-

ity change (1AT) of seawater (e.g. Silverman et al., 2007;

Shamberger et al., 2011; Albright et al., 2013). This is be-

cause precipitation of CaCO3 decreases the total alkalinity

(AT) of seawater whereas dissolution has the opposite effect.

This alkalinity anomaly technique was first used in a reef set-

ting in the 1970s (Smith and Pesret, 1974; Smith and Kinsey,

1976) and has since been used to estimate basin-scale pelagic

and coral reef calcification (Steiner et al., 2014). Greef is cal-

culated by measuring the change in AT over a discrete time

interval (1t); because the change in AT includes dissolu-

tion the calcification measured is net ecosystem calcification

(NEC) or net Greef (Eq. 1; Albright et al., 2013):

Greef =−0.5 ·pz
1AT

1t
(1)

where p is seawater density (kg m−3) and z is water depth

(m). Greef measured using 1AT accounts for inorganic

precipitation (Gi; Fig. 1) and dissolution; however, unlike

census-based methods for calculating Greef, it is not possi-

ble to break down the contribution of individual calcifiers in

the reef community (Perry, 2011). Gcoral calculated from the

width and density of annual bands within the colony skele-
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Table 1. Summary of calcification models implemented in the global reef accretion model (GRAM) framework.

Model ReefHab KAG LOUGH SILCCE

Source Kleypas (1997) Kleypas et al. (2011) Lough (2008) Silverman et al. (2009)

Application or

Formulation

Predicting changes

to reef habitat extent,

globally, since last

glacial maximum.

Seawater carbonate

chemistry changes on

a transect in Moorea,

French Polynesiaa.

Derived from coral

core (Porites sp.)

measurements and

temperature form

the HadISST data set

(Rayner et al., 2003).

Future climate

simulations at reef

locations provided by

ReefBaseb.

Scale applied Global Reef Colony Reef/Global

Esurf X X – –

�a – X – X
SST – – X X
Units mm m−2 yr−1 mmol m−2 h−1 g cm−2 yr−1 mmol m−2 yr−1

a Model output was compared to alkalinity changes measured in situ at Moorea by Gattuso et al. (1993, 1996, 1997) and Boucher et al. (1998). b ReefBase: A Global

Information System for Coral Reefs (http://www.reefbase.org).

ton is commonly used in census-based observations of Greef

(Fig. 1; Knutson et al., 1972).

Estimates of Gglobal alone tell us little about how reefs

will be affected by climate change at a global scale. Instead,

if coral calcification (Gcoral) and reef community calcifica-

tion rates (Greef) can be numerically modelled as a func-

tion of the ambient physicochemical environment (e.g. irra-

diance (E), �a and temperature), then the results could be

scaled up to produce an estimate of Gglobal that could be re-

calculated as global environmental conditions change. Exam-

ples of this approach (Table 1) include: (1) Kleypas (1997;

“ReefHab”), which is sensitive to E only and was initially

developed to predict global reef calcification (Gglobal) and

habitat area and used to estimate changes in Gglobal since

the Last Glacial Maximum; (2) Kleypas, Anthony and Gat-

tuso (2011; “KAG”), which simulates Greef as a function

of E and �a and was originally developed to simulate car-

bonate chemistry changes in seawater on a reef transect; (3)

Lough (2008; “LOUGH”) which simulates Gcoral as a func-

tion of sea surface temperature (SST) and was derived from

the strong relationship observed between SST and Gcoral in

massive Porites sp. colonies from the Great Barrier Reef

(GBR), Arabian Gulf and Papua New Guinea; and (4) Sil-

verman, Lazar, Cao, Caldeira and Erez (2009; “SILCCE”),

which simulates Greef as a function of SST and �a and was

used to simulate the effects of projected future SSTs and

�a at known reef locations globally. Although further mod-

els exist describing Gcoral as a function of carbonate ion

concentration ([CO2−
3 ]; Suzuki et al., 1995; Nakamura and

Nakamori, 2007) these are synonymous to the �a function

used in KAG and SILCCE. With the exception of Kleypas

et al. (2011), which included classes of non-calcifying sub-

strate, the above models do not account for community com-

position. Reef calcification rates vary considerably depend-

ing on the abundance of corals and coralline algae (Gattuso

et al., 1998). Therefore, successful up-scaling of Greef and

Gcoral to estimate Gglobal also requires, as a minimum, quan-

tifying live coral cover (LCC).

To date it remains to be demonstrated that any of the pub-

lished models reproduce present-day reef calcification rates

(i.e. Greef). Despite this, simulations of the effects of fu-

ture climate scenarios have been attempted using calcifica-

tion rate models. For example, McNeil et al. (2004) incorpo-

rated LOUGH with the linear relationship observed between

�a and calcification in the BioSphere 2 project (Langdon et

al., 2000), and predicted that Greef will increase in the fu-

ture. In contrast, a similar study by Silverman et al. (2009;

SILCCE) concluded that coral reefs will start to dissolve.

Whilst McNeil’s study was criticized for its incorrect under-

lying assumptions (Kleypas et al., 2005), the contradictory

predictions from these two models highlights the importance

of comparing and fully evaluating reef calcification models,

starting with their performance against present-day observa-

tions.

Here we describe a novel model framework, the global reef

accretion model (GRAM), and evaluate the four previously

published calcification models (ReefHab, KAG, LOUGH

and SILCCE) in terms of their skill in predicting Gcoral and

Greef. The independent evaluation data set comprises obser-

vations ofGreef from census-based methods and1AT exper-

iments as well as Gcoral measured from coral cores. The in-

dividual model estimates of Gglobal are discussed in compar-

ison with previous empirical estimates. We highlight where

model development is required in order to accurately simu-

late the effects of past and future environmental conditions

on calcification rates in coral reefs.
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Table 2. Environmental data description (variable name, units, temporal and spatial resolution), and their sources, used to produce the

physico-chemical domain mask (ranges shown) and force the calcification models (ReefHab, KAG, LOUGH and SILCCE) in the global reef

accretion model (GRAM) framework.

Variable Unit Temporal Spatial Mask Range ReefHab KAG LOUGH SILCCE Source

SST ◦C Monthly 1◦ 18.0–34.4 – – WOA 2009 (Locarnini et al., 2010)

http://www.nodc.noaa.gov/OC5/

WOA09/netcdf_data.html

Salinity – Annual 1◦ 23.3–41.8 – – – – WOA 2009 (Antonov et al., 2010)

http://www.nodc.noaa.gov/OC5/

WOA09/netcdf_data.html

Bathymetry m – 1/60◦ ≤ 100 – – GEBCO One Minute Grid

https://www.bodc.ac.uk/data/online_

delivery/gebco/

PAR dW m−2 Daily 0.5◦ – – – Bishop’s High-Resolution (DX) Sur-

face Solar irradiance (Lamont–Doherty

Earth Observatory, 2000)

http://rda.ucar.edu/datasets/ds741.1/

K490 m−1 Annual 1/12◦ – – – OceanColor (2013)

http://oceancolor.gsfc.nasa.gov/

�a UVic – Decadal 3.6◦× 1.8◦ – – – University of Victoria’s Earth Sys-

tem mate Model (Weaver et al., 2001;

Schmittner et al., 2009; Turley et al.,

2010)

SST – sea surface temperature; WOA – World Ocean Atlas; GEBCO – general bathymetric chart of the Oceans; BODC – British Oceanographic Data Centre;

PAR – surface photosynthetically available radiation; K490 – 490 nm light attenuation coefficient; �a – aragonite saturation.

Figure 2. Schematic of logical steps at each time step within

GRAM. GRAM’s domain is defined by a bathymetric and physico-

chemical mask within which calcification is calculated, at each time

step and in every domain grid cell, according to the calcification

model used. Where calcification is modelled as a function of light,

the availability of light at depth (Ez) is calculated for each model

layer (zi).

2 Methods

2.1 Model description

Four calcification models were selected for evaluation in

global-scale simulations: (1) ReefHab (Kleypas, 1997), (2)

KAG (Kleypas et al., 2011), (3) LOUGH (Lough, 2008) and

(4) SILCCE (Silverman et al., 2009; Table 2). Previous ap-

plications for these models cover a hierarchy of spatial scales

(colony, LOUGH; reef, KAG and global, ReefHab and SIL-

CCE) as well as representing different approaches for mea-

suring Gcoral (Fig. 1; LOUGH) and Greef (Fig. 1; ReefHab,

KAG and SILCCE). Any modifications of the models from

their published form are described below, and these are only

made where necessary to fit them into the same GRAM

framework (Fig. 2).

2.1.1 ReefHab

Kleypas (1997) developed ReefHab to predict changes in the

global extent of reef habitat since the last Glacial Maximum

(Kleypas, 1997). Like photosynthesis, calcification is light

saturated (Allemand et al., 2011); as the rate of calcifica-

tion increases toward a maximum value, it becomes light

saturated after irradiance increases beyond a critical value.

This curvilinear relationship can be described with vari-

ous functions – however, hyperbolic tangent and exponen-

tial functions have been found to best describe the relation-
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ship (Chalker, 1981). The ReefHab model calculates vertical

accretion (Greef in cm m−2 d−1) as a function of irradiance

at the depth of the seabed (Ez) and maximum growth rate

(Gmax = 1 cm yr−1). The hyperbolic tangent function uses a

fixed light saturation constant (Ek = 250 µmol m−2 s−1) to

generate a scaling factor for Gmax (Eq. 2):

Greef =Gmax · tanh

(
Ez

Ek

)
·TF Ez >Ec (2)

where Ez is derived from the surface irradiance (Esurf)

and the inverse exponent of the product of the light at-

tenuation coefficient (K490) and depth (z; Eq. 3). Fol-

lowing the methodology in Kleypas (1997), if Ez is less

than the minimum irradiance necessary for calcification

(250 µmol m−2 s−1) Greef = 0 cm m−2 d−1. TF is the topog-

raphy factor (Eq. 4), which reduces Greef in areas of low to-

pographic relief:

Ez = Esurf · e
−K490z (3)

TF=
ln(α · 100)

5
(4)

where α is calculated from a nine-cell neighbourhood (centre

index 2.2) by summing the inverse tangent of the difference

between cell depths (zi,j − z2.2) divided by the distance be-

tween cell centres (Di,j−2.2):

α =

3∑
i=1

3∑
j=1

tan−1zi,j − z2.2

Di,j−2.2

(5)

Vertical accretion (cm m−2 d−1) is converted to g (CaCO3)

cm−2 d−1 by multiplying average carbonate density

(2.89 g cm−3) and porosity (50 %) as defined by Kley-

pas (1997).

2.1.2 KAG

Anthony et al. (2011) performed laboratory flume incuba-

tions on Acropora aspera to parameterize the relationship

between (day and night) calcification rates and�a, determin-

ing the reaction order (n) and maximum calcification rates

(kday and knight). The resultant model was then implemented

by Kleypas et al. (2011), with the addition of an exponen-

tial light-sensitive function that accounted for light-enhanced

calcification, to simulate seawater chemistry changes along a

reef transect at Moorea, French Polynesia. The transect did

not exceed 2 m in depth; therefore, it was appropriate to use

the surface irradiance (Esurf) for the calculation of Greef. In

this study Greef is calculated (Eq. 6) using Ez (Eq. 3) rather

than Esurf because the maximum depth in the model domain

is 100 m, greatly exceeding the depth of the original applica-

tion:

Greef =

(
Gmax(1− e

−Ez/Ek )n+Gdark

)
·Ac (6)

where Ac is the fractional cover of live coral (i.e. Ac = 1

when coral cover is 100 %). Here Ek is greater than in

ReefHab (400 µmol m−2 s−1 versus 250 µmol m−2 s−1) fol-

lowing the parameterization used by Kleypas et al. (2011).

Greef is calculated here in mmol m−2 d−1 and is divided into

day and night rates (Gmax and Gdark); both are calculated as

a function of �a. For this study it was necessary to intro-

duce day length (Lday; h) to Eq. (7) and Eq. (8) because of

the daily time step as opposed to the hourly time step of the

original model:

Gmax = kday(�a− 1)nLday (7)

Gdark = kdark(�a− 1)n(24−Lday) (8)

Lday was calculated using the method described by Haxeltine

and Prentice (1996), which uses Julian day (Jd) and latitude

(lat) as follows:

Lday = 0 u≤ v (9)

Lday = 24 ·
cos−1

· (−u/v)

2π
u >−v, u < v (10)

Lday = 24 u≥ v (11)

where the variables u and v are calculated from lat and aa (a

function of Jd; Eq. 14):

u= sin(lat) · (aa) (12)

v = cos(lat) · cos(aa) (13)

aa =−23.4o · cos

(
360(Jd+ 10)

365

)
(14)

CaCO3 production in mmol m−2 d−1 was converted

to g cm−2 d−1 using the molecular weight of CaCO3

(MR= 100).

2.1.3 LOUGH

ReefHab and KAG were both derived from theoretical un-

derstanding of the process of calcification and parameterized

by values observed in the literature or in situ. In contrast,

LOUGH was derived from the observed relationship between

annual calcification rates of massive Porites sp. colonies and

local SST (Lough, 2008). A linear relationship (Eq. 15) was

fitted to data from 49 reef sites from the Great Barrier Reef

(GBR; Lough and Barnes, 2000), Arabian Gulf and Papua

New Guinea (Lough, 2008), and accounted for 85 % of the

variance (p < 0.001):

Gcoral =
0.327 ·SST− 6.98

365
(15)

Division by 365 days is necessary here to adapt the original

model to the daily time step used in this study and results in

Gcoral in g cm−2 d−1.

www.biogeosciences.net/12/1339/2015/ Biogeosciences, 12, 1339–1356, 2015
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2.1.4 SILCCE

Using the alkalinity anomaly technique (1AT), Silverman

et al. (2007) found a correlation between rates of inorganic

precipitation (Gi) and net Greef (mmol m−2 d−1). Silverman

et al. (2009) fitted observations to Eq. (16) to calculate Gi as

a function of �a and SST (Eq. 17):

Gi = kSST(�a − 1)nSST (16)

Gi =
24

1000
(−0.0177 ·SST2

+ 1.4697 ·SST+ 14.893)

(�a− 1)(0.0628·SST+0.0985) (17)

Incorporating Eq. (17) with SST and �a sensitivity of coral

calcification gives

Greef = k
′
r ·Gi · e

−

(
k′p(SST−Topt)/�

2
a

)2

·Ac (18)

where kr ′ (38 m2 m−2) and kp′ (1 ◦C−1) are coefficients

controlling the amplitude and width of the calcification

curve. Topt is the optimal temperature of calcification and

is derived from summer temperatures in the WOA 2009

monthly average SST (Locarnini et al., 2010): June (in

the Northern Hemisphere) and December (in the Southern

Hemisphere). Again, CaCO3 production in mmol m−2 d−1

was converted to g cm−2 d−1 using the molecular weight of

CaCO3 (MR= 100).

2.1.5 Global reef accretion model (GRAM) framework

The calcification production models above were imple-

mented within our global reef accretion model (GRAM)

framework. In this study, GRAM was implemented on a

0.25◦× 0.25◦ global grid. Vertically, the model domain was

resolved with 10 depth levels at equal 10 m intervals with

the fraction, by area, of a model cell (quasi-seabed) within

each 10 m layer recorded for calculating total CaCO3 pro-

duction (Fig. 2). A physicochemical mask was imposed to

limit CaCO3 production to shallow-water tropical and sub-

tropical areas. This mask was defined following Kleypas

(1997; Kleypas et al., 1999): SST (> 18 ◦C), salinity (23.3–

41.8) and depth (≤ 100 m). Calcification was calculated on

a daily basis over the course of 1 full calendar year and ac-

cording to the environmental conditions at each grid cell (de-

scribed below).

2.2 Input data description

Table 1 lists the data used to force GRAM. Ocean bathymetry

was calculated from GEBCO One Minute data set (https:

//www.bodc.ac.uk/data/online_delivery/gebco/) and mapped

to the model grid. Monthly values for SST (Locarnini et al.,

2010) and salinity (Antonov et al., 2010) were obtained from

the World Ocean Atlas (WOA) 2009. These climatologies

are reanalysis products of observations collected 1955–2009.

The WOA data have a scaled vertical resolution with 24 lay-

ers, with a maximum depth of 1400 m; however, only sur-

face values were used in this study. Daily photosynthetically

available radiation (PAR), for the period 1991–1993, were

obtained from Bishop’s High-resolution (DX) surface solar

irradiance data (Lamont–Doherty Earth Observatory, 2000)

derived from the International Satellite Cloud Climatology

Project (ISCCP) data (Bishop and Rossow, 1991; Bishop

et al., 1997). Following Kleypas (1997), units of dW m−2

were converted to µmol m−2 s−1 by multiplying by a factor

of 0.46. The monthly diffuse light attenuation coefficient of

490 nm light (K490) was obtained from the Level-3 binned

MODIS-Aqua products in the OceanColor database (avail-

able at: http://oceancolor.gsfc.nasa.gov). Surface �a was de-

rived from the University of Victoria’s Earth System Climate

Model (Schmittner et al., 2009; Turley et al., 2010) for the

decade 1990–2000. All input data were converted, without

interpolating, to the same resolution as the model by record-

ing the closest data point to the coordinates of the model

grid cell’s centre. Missing values were extrapolated as an un-

weighted mean from the nearest values in the data set found

in the model cell’s neighbourhood (including diagonals) in

an area up to 1◦ from the missing data point.

2.3 Evaluation data set and methodology

An independent data set of in situ measured calcification

rates (Greef and Gcoral) was collated from the literature to

evaluate model performance. In total, data from 11 coral

core studies (Table 3; Montastrea and Porites sp.), 8 census-

based and 12 1AT studies (Table 4) were assembled. This

data set is not comprehensive of all studies that have mea-

sured Greef and Gcoral; many older studies were excluded

(e.g. Sadd, 1984) due to errors in calculation of Greef that

were resolved by Hubbard et al. (1990). The studies sam-

pled cover a representative range of SST and �a conditions

in which present-day reefs are found (Fig. 3). The positions

of the in situ measurements were used to extract the equiv-

alent data points from the gridded model output. Where lo-

cation coordinates were not reported, Google Earth (avail-

able at: http://earth.google.com) was used to establish the

longitude and latitude, accurate to the model resolution of

0.25◦. For uniformity, reported units of measurement were

converted to g (CaCO3) cm−2 yr−1. The values of live coral

cover (LCC) reported in the census-based and 1AT studies

were used to convert model Gcoral to Greef. A global average

of 30 % (Hodgson and Liebeler, 2002) was used where LCC

was not reported (Table 4).

Model skill in reproducing the observed data was assessed

using simple linear regression analysis preformed on ob-

served calcification rates paired with their equivalent model

value. When testing LOUGH against coral core data, val-

ues that were used in the original formulation of the model

(Lough, 2008) were excluded so as to preserve the indepen-

dence of the data. Similarly, when correlating SILCCE with

Biogeosciences, 12, 1339–1356, 2015 www.biogeosciences.net/12/1339/2015/
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Table 3. Details of studies used for evaluating model calcification rates; observed coral calcification rates (Gcoral) derived from annual

density banding in coral cores; – indicates fields that were not reported. Full data, including values ofGcoral, are supplied in the Supplement.

Studies are listed alphabetically by their ID.

ID Source Sea/region Genus No. sites Period observed Latitude ◦ N Longitude ◦ E

Ca Carricart-Ganivet and Merino (2001) Gulf of Mexico Montastrea 6 1968–1991 19.08 to 22.53 264.15 to 270.35

Ch Chen et al. (2011) South China Sea Porites 1 – 22.45 114.69

Co Cooper et al. (2012)a Western Australia Porites 6 1900–2010 −28.47 to −17.27 113.77 to 119.37

De De’ath et al. (2009)a GBR Porites 69 1900–2005 −23.55 to −9.58 142.17 to 152.75

Ed Edinger et al. (2000) Java Sea Porites 5 1986–1996 −6.58 to −5.82 110.38 to 110.71

Fa Fabricius et al. (2011) Papua New Guinea Porites 3 – −9.83 to −9.74 150.82 to 150.88

Gr Grigg (1982) Hawaii Porites 14 – 19.50 to 28.39 181.70 to 204.05

He Heiss (1995) Gulf of Aqaba Porites 1 – 29.26 34.94

Po Poulsen et al. (2006) Arabian Gulf Porites 4 1968–2002 27.20 to 28.35 48.90 to 49.96

Sc Scoffin et al. (1992) Thailand Porites 11 1984–1986 7.61 to 8.67 97.65 to 98.78

Sh Shi et al. (2012) South China Sea Porites 1 1710–2012 9.90 115.54

a Data were sourced from the Australian Institute of Marine Science (AIMS): AIMS (2014a) provides access to “De” data and AIMS (2014b) provides access to “Co” data.

De data were used in the formulation of LOUGH (Lough, 2008) but subsequently published following further study (De’ath et al., 2009).
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Figure 3. Distribution of sea surface temperatures (SST) and arag-

onite saturation (�a) at: (All) reef locations (ReefBase: A Global

Information System for Coral Reefs. April, 2014. http://www.

reefbase.org); (Cores) coral core data locations; (Census) census-

based and (1AT) alkalinity anomaly study locations. SST values

are taken from WOA 2009 annual average values (Locarnini et al.,

2010) and �a values are derived from UVic model (Weaver et al.,

2001; Schmittner et al., 2009; Turley et al., 2010) output. The range,

25th and 75th percentiles, median lines and outliers of SST and �a

are displayed in the box and whisker plots.

1AT data, the Silverman et al. (2007) datum was excluded.

A global average LCC of 30 % (Hodgson and Liebeler, 2002)

was applied to model CaCO3 production in model compar-

isons with census-based and 1ATGreef at a global scale.

Global mean Greef and Gglobal were calculated by applying

a further 10 % reefal area to model CaCO3 production; this

follows the assumption in Kleypas (1997) that 90 % of the

seabed is composed of unsuitable substrate for reef coloniza-

tion and growth. Global and regional values are compared

directly to the most recent estimates by Vecsei (2004), al-

though other global estimates are also considered.

3 Results

3.1 Model carbonate production rates

Globally averaged values of Greef (summarized in Table 5)

vary little between ReefHab (0.65± 0.35 g cm−2 yr−1),

KAG (0.51± 0.21 g cm−2 yr−1) and LOUGH

(0.72± 0.35 g cm−2 yr−1), with SILCCE producing a

somewhat smaller value (0.21± 0.11 g cm−2 yr−1). A

consistent feature across all models is the high carbonate

production in the southern Red Sea along the coast of

Saudi Arabia and Yemen and, in KAG and LOUGH, the

East African coast (Fig. 4). In all models, there was very

low calcium carbonate production in the northern Red Sea

compared to the south. There is higher calcium carbonate

production in the western Pacific than in the east, and

along the Central American and northern South American

coastline, and this is more pronounced in KAG and LOUGH

than ReefHab. In scaling up to the global scale, estimates

of Gglobal based on the models ReefHab (1.40 Pg yr−1) and

SILCCE (1.1 Pg yr−1) were substantially lower than for the

other model setups (3.06 Pg yr−1 for KAG and 4.32 Pg yr−1

for LOUGH).

3.2 Observed carbonate production rates

Figure 5 shows the location and magnitude of the calcifi-

cation observations. Coral core (Gcoral) values are higher

(0.5–2.8 g cm−2 yr−1; full data set in the Supplement)

than Greef measurements from either census-based (0.1–

0.9 g cm−2 yr−1) or 1AT (0.003–0.7 g cm−2 yr−1; Table 4)

methods. In general, coral core data show decreasing Gcoral

with increasing latitude that is most pronounced in Hawaii

and along both east and west Australian coastlines (Fig. 5).

www.biogeosciences.net/12/1339/2015/ Biogeosciences, 12, 1339–1356, 2015
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Table 5. Average regional and global reef calcification rates (Greef) and global CaCO3 budgets (Gglobal) and reef areas derived from the four

model setups (≤ 40 m) and Vecsei (2004). Model Greef is calculated as the total CaCO3 production multiplied by global average live coral

cover (LCC) of 30 % (Hodgson and Liebeler, 2002) and 10 % seabed reefal area with the exception of ReefHab, which uses a function of

seabed topographic relief to modify total CaCO3 production to giveGreef. Global reef area is 10 % of the total area accounting for inter-reefal

area.

Greef±SD (≤ 40 m; g cm−2 yr−1)

Ocean region ReefHab KAG LOUGH SILCCE Vecsei (2004)

Caribbean Sea 0.86± 0.32 0.61± 0.07 0.82± 0.09 0.23± 0.05 0.80 & 0.01a

North Atlantic Ocean 0.74± 0.40 0.44± 0.22 0.59± 0.21 0.17± 0.10

South Atlantic Ocean 0.51± 0.35 0.40± 0.27 0.57± 0.25 0.16± 0.10

Indian Ocean 0.65± 0.36 0.54± 0.17 0.82± 0.17 0.22± 0.08 0.36

North Pacific Ocean 0.67± 0.35 0.49± 0.22 0.70± 0.22 0.20± 0.11 0.65

South Pacific Ocean 0.67± 0.30 0.61± 0.20 0.93± 0.21 0.29± 0.12

GBR 0.66± 0.31 0.67± 0.05 0.76± 0.04 0.25± 0.04 0.45

Global Metrics (≤ 40 m)

Gglobal (Pg yr−1) 1.40 3.06 4.32 1.10 0.65–0.83

Reef area (× 103 km2) 195 592 567 500 303–345

Greef±SD (g cm−2 yr−1) 0.65± 0.35 0.51± 0.21 0.72± 0.35 0.21± 0.11 0.09–0.27

a Values of Greef for Atlantic/Caribbean framework and biodetrital reef respectively.

However,Gcoral is not always smaller at higher latitudes. For

example, the Arabian Gulf is toward the upper end of all

Gcoral observations (1.44± 0.57 g cm−2 yr−1; full data set in

online supplementary material) whereas Gcoral in the Gulf

of Aqaba is twofold smaller (0.78± 0.28 g cm−1 yr−1) de-

spite the similar latitude of the two locations. This result can-

not be corroborated by 1AT or census data as there is no

observation for the Arabian Gulf, however, there is agree-

ment that calcification in the Gulf of Aqaba is toward to

lower end of the observed range for 1AT measured Greef

(0.18± 0.09 g cm−2 yr−1) and Gcoral measured from coral

cores. In contrast, the census-based and 1AT measurements

show no latitudinal trends.

3.3 Model evaluation

Figure 6 shows the correlation of corresponding model and

observed calcification rates. With a slope of 0.97, the only

significant correlation was that between LOUGH and inde-

pendent coral core data (R2
= 0.66, p < 0.0001). The Greef

measured by Perry et al. (2013) in the Caribbean also fell

close to a 1 : 1 line with LOUGH, but the positive trend was

not significant, either when considering just this data sub-

set (R2
= 0.74, p = 0.14, n= 4), or all 1AT measured Greef

(R2
= 0.57, p = 0.14, n= 11). The average regional Greef

estimated by all models showed little geographic difference

(Fig. 7), which is in conflict with the conclusions of Vec-

sei (2004) who found that the Atlantic, including Caribbean

reefs, had the highest Greef of all regions, followed by the

Pacific and GBR (Table 5).

The SILCCE model produced a global average Greef

(0.21 g cm−2 yr−1) that falls within Vecsei’s (2004) esti-

mated range (0.09–0.27 g cm−2 yr−1) but all other models

were in excess of this (Table 5). Similarly, all model esti-

mates of Gglobal (1.10–4.32 Pg yr−1; Table 5) exceed esti-

mates by Vecsei (2004; 0.65–0.83 Pg yr−1). This difference

was greatest for KAG and LOUGH (3.06 and 4.32 Pg yr−1

respectively). Global reef area (the area sum of all model

cells where Gcoral > 0 g cm−2 yr−1 and with the 10 % reefal

area applied) varies significantly between models (Table 5).

ReefHab designates 195× 103 km2 as global reef area,

which is less than that reported by Vecsei (2004; 304–

345× 103 km2); however, the other model setups estimate

almost double this (500–592× 103 km2).

4 Discussion

Four coral reef carbonate production models, contrasting in

terms of dependent environmental controls, were evaluated

at local, regional and global scales. The results show that

only the model using SST alone (LOUGH) is able to pre-

dict Gcoral, and to a degree Greef, with any statistical skill

(Fig. 6). At the global scale, there is a large offset between

the empirical and model estimates of Gglobal (Table 5), with

the LOUGH Gglobal estimate approximately a factor of 5

greater than previous estimates by Milliman (1993) and Vec-

sei (2004). Although Gglobal values from ReefHab and SIL-

CCE (1.4 and 1.1 Pg yr−1) are significantly closer to the em-

pirical estimates of Gglobal than the other models, their poor

performance at the local reef scale (measured by Greef and

Gcoral) undermines confidence in their predictive power at

Gglobal scale. Since empirical estimates of Gglobal cannot

themselves be evaluated, it is necessary to examine the fac-
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Figure 4. Model outputs of reef carbonate production. Depth-

integrated (≤ 40 m) CaCO3 production, with 30 % live coral cover

(LCC) and 10 % seabed reefal area (Greef) for: (a) ReefHab,

(b) KAG, (c) LOUGH and (d) SILCCE. TheGreef values displayed

are aggregated from the model resolution (0.25◦) to a 1◦ grid to

facilitate visualization.

tors involved in the estimation of Gglobal, and what role they

play in terms of the disparity with the various model values.

Global reef area is used in extrapolating Greef to Gglobal

and so may have a significant effect on both model and em-

pirical estimates of Gglobal. The LOUGH model achieves a

global reef area of 567× 103 km2, comparable to the reef

area used by Milliman (1993) and Opdyke and Walker (1992)

of 617× 103 km2 taken directly from Smith (1978). Whereas

Vecsei (2004) used a revised reef area of 304–345× 103 km2

(Spalding and Grenfell, 1997) which is almost half Smith’s

estimate. Despite this difference in global reef area, Milli-

man (1993) and Vecsei (2004) estimate comparable values of
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Figure 5. Compilation of published reef carbonate production

measurements. Location and magnitude of (a) coral calcification

(Gcoral) observed in coral cores and, reef community calcification

(Greef) measured in (b) census-based and (c) alkalinity anomaly

studies (see Tables 4 and 5 for study ID keys).

Gglobal, further confounding evaluation of modelled Gglobal.

The question of where to draw the line in terms of establish-

ing reef boundaries is highly pertinent to modelling Gglobal

as it dictates the area considered to be “coral reef”. In our

analysis, all grid cells with positive CaCO3 production (i.e.

G> 0 g cm−2 yr−1) are considered to contain coral reef, even

those that may be close to 0 g cm−2 yr−1. Recently formed

(immature) reefs with coral communities that have positive

Greef but where little or no CaCO3 framework is present do

exist (Spalding et al., 2001) and are accounted for by all four

models. However, these coral communities are not included

in reef area reported by Spalding and Grenfell (1997) and

further information about their production rates and global

abundance is needed to accurately quantify their significance

in estimatingGglobal empirically. The presence of these coral

communities has been correlated with marginal environmen-

tal conditions where low (highly variable) temperatures and

high nutrient concentrations are seen (Couce et al., 2012).

It logically follows that excluding these marginal reefs by

tightening the physicochemical mask for SST to > 20 ◦C, as

derived by Couce et al. (2012), would reduce global reef area

and close the gap between empirical and model estimates of

Gglobal. Further to this is the assumption within GRAM that
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Figure 6. Correlation of observed coral calcification (Gcoral) and reef community calcification (Greef) to model predictions for coral core,

census-based and alkalinity anomaly (1AT) data (1 : 1 relationship shown as red dashed line). All model estimates are multiplied by the

live coral cover (LCC) reported in the observation studies to give Greef, except ReefHab in which Greef is calculated using a function of

topographic relief (TF). The use of TF follows the method of Kleypas (1997); it was derived from empirical observation of reef growth and

was a means to scale potential calcification (Gcoral) to produceGreef in the absence of global data for LCC. All significant linear regressions

are plotted (p < 0.05; grey solid line) with equation and regression coefficient (R2). Data used to develop a model are also plotted (open

circles) but were excluded from the regression analysis to preserve data independence.

www.biogeosciences.net/12/1339/2015/ Biogeosciences, 12, 1339–1356, 2015



1350 N. S. Jones et al.: Evaluation of coral reef carbonate production models

1.5

1.0

0.5

0.0

G
lo
ba
l

C
ar
ib
be
an

At
la
nt
ic

In
di
an

Pa
ci
fic

G
B
R

G
re
e
f
(g

cm
-2
y
r-
1
)

(a) ReefHab

(b) KAG

(c) LOUGH

(d) SILCCE

1.5

1.0

0.5

0.0

1.5

1.0

0.5

0.0

1.5

1.0

0.5

0.0

Figure 7. Box and whisker plots of model estimates for global and

regional CaCO3 production. A live coral cover (LCC) of 30 % is ap-

plied. Range (whiskers), 25th and 75th percentiles (boxes), median

(red line), and data outliers (+) are plotted.

the area between reef patches in a “reef” cell (i.e. a cell with

G> 0 g cm−2 yr−1) accounts for 90 % of the cell’s area, with

only 10 % assumed to be composed of suitable substrate for

reef formation and coral recruitment. The availability of suit-

able substrate has the greatest impact on the biogeography of

coral reefs (Montaggioni, 2005) and so clearly needs to be

evaluated to improve Gglobal estimates.

Reef area does not account for all of the disparity be-

tween estimates of Gglobal; attenuation of Greef with depth

may also be a causal factor. In both Atlantic and Indo-Pacific

reefs, there was an exponential trend, decreasing with depth

(≤ 60 m), in Greef data collated by Vecsei (2001). Modelled

Greef estimates should, therefore, also vary as a function of

depth. In its published form, LOUGH produces the same

value for Greef throughout the water column; however, we

can account for this model limitation by imposing a light-

sensitive correction in the form of an exponential function to

the output from LOUGH so thatGreef is a function of surface

(Gsurf) and depth (z):

Greef =Gsurf · e
−kgz (19)

where kg is a constant controlling the degree of light attenu-

ation with depth, in this estimate K490 was used. Eq. (19)

has the same form as that for calculating light availabil-

ity (Eq. 3) used in both ReefHab and KAG. Following

this adjustment, the LOUGH Gglobal estimate is reduced to

2.56 Pg yr−1, which is closer to empirical estimates. How-

ever, where light availability has been incorporated into other

models no significant skill in predicting Gcoral or Greef was

observed (ReefHab and KAG in Fig. 6).

A further factor that strongly affectsGreef andGglobal esti-

mates is the percentage of the reef covered by calcifying or-

ganisms (generally abridged as the term “live coral cover”, or

LCC, although implicitly including other calcifiers). Apply-

ing the global average LCC of 30 % clearly does not account

for the large spatial and temporal variation in coral cover

(< 1–43 % in the data set collated here; Table 4). Indeed, only

a very limited number of Pacific islands (4/46) were found to

have ≥ 30 % LCC between 2000 and 2009 in the compila-

tion of Vroom (2011). The global average of 30 % was cal-

culated from surveys of 1107 reefs between 1997 and 2001

(Hodgson and Liebeler, 2002) and represents total hard coral

cover (LCC plus recently killed coral), so is an overestimate

of LCC. LOUGH has significant skill in replicating observed

Gcoral and has some skill in predicting Greef values observed

by a standardized census method (ReefBudget; Perry et al.,

2012), but only when the local observed LCC is applied. If

however, the global average LCC is applied to LOUGH the

correlation with Greef is lost. In addition, the global average

coral cover may also account for the uniformity of regional

Greef values (Fig. 7), in contrast to the significant differences

between regions identified by Vecsei (2004) – for example,

the Atlantic reefs (including the Caribbean) having the great-

est Greef (0.8 g cm−2 yr−1) and reefs in the Indian Ocean the

smallestGreef (0.36 g cm−2 yr−1; Vecsei, 2004; Table 5). The

pattern is reversed in terms of coral cover, with Indo-Pacific

reefs having∼ 35 % hard coral cover compared to∼ 23 % on

Atlantic reefs (Hodgson and Liebeler, 2002). Further studies

have shown that Caribbean reefs have greater Greef and ver-

tical accumulation rates than Indo-Pacific reefs, possibly due

to increased competition for space on the latter (Perry et al.,

2008). These issues highlight the need for coral cover to vary

dynamically within models, allowing it to change spatially

and temporally according to coral population demographics

(mortality, growth and recruitment).

A specific example of unrealisticGreef is seen for the Gulf

of Carpentaria, where there are no known currently accreting

reefs (Harris et al., 2004) but projections of carbonate pro-

duction according to output from the LOUGH model are par-

ticularly high (Fig. 4). At least seven submerged reefs have

been discovered in the Gulf of Carpentaria and a further 50

may exist, but these reefs ceased growth ∼ 7 kyr BP when

they were unable to keep up with sea level rise (Harris et al.,

2008). Failure to repopulate may be due to a combination

of factors including very low larval connectivity in the Gulf

of Carpentaria (Wood et al., 2014) and high turbidity, due

to re-suspension of bottom sediments and particulate input

from rivers (Harris et al., 2008). ReefHab is the only model

to predict an absence of reef accretion in the majority of the

Gulf of Carpentaria (Fig. 4), indicating that model sensitiv-

ity to light attenuation is essential. This example also raises
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two further points: firstly, that there are certainly undiscov-

ered reefs that are not accounted for in empirical estimates of

Gglobal and, secondly, that larval connectivity should be con-

sidered in simulations of Greef because of its role in regulat-

ing coral abundance after disturbance (Almany et al., 2009;

Jones et al., 2009).

In addition to static coral cover, growth parameters –

Gmax, Eq. (2);Ek, Eq. (2) and (6); kday, Eq. (7); kdark, Eq. (8);

kr ′ and kp′ Eq. (18) – did not vary geographically, having the

same value in all model grid cells. This potentially affected

the skill of KAG in reproducing Gcoral and Greef since in

the original application of the model (Kleypas et al., 2011)

parameters (kday, kdark and Ek) were determined for obser-

vations at the location of the reef transect that was simu-

lated. However, when looking at the correlation of model to

data it is important to acknowledge the observational vari-

ability and error. The standard deviation, where reported,

for census-based and 1AT measured Greef is ≤ 100 % of

the mean (Table 4). In addition to this variability, observa-

tional error is greater in census-based measurements ofGreef

than 1AT measurements (Vecsei, 2004). In a review of reef

metabolism, Greef was shown to vary considerably (0.05–

1.26 g cm−2 yr−1) depending on the abundance of coral and

coralline algae (Gattuso et al., 1998). Greef (measured by

1AT) appears to vary little across Pacific coral reefs (Smith

and Kinsey, 1976) but Gattuso et al. (1998) attribute this to

the similarity of these reefs in terms of community structure

and composition, as well as coral cover. The apparent agree-

ment between LOUGH and Caribbean Greef (as reported by

Perry et al., 2013) suggests that a standardized experimental

methodology for measuring Greef is needed and implement-

ing this would also provide a consistent data set that would

be invaluable for model evaluation. Unexpectedly, this result

also suggests that LOUGH may have skill in predictingGreef

in the Atlantic Ocean despite the absence of massive Porites

sp. on which the LOUGH model is built. Porites is a par-

ticularly resilient genus (e.g. Barnes et al., 1970; Coles and

Jokiel, 1992; Loya et al., 2001; Hendy et al., 2003; Fabricius

et al., 2011) and so applicability to other reef settings, coral

genera and calcifiers as a whole is surprising. Gcoral of a sin-

gle species has been used in some census-based studies to

calculate the Gcoral of all scleractinian corals present (Bates

et al., 2010) and the LOUGH results suggest this generaliza-

tion may be appropriate.

Unlike census-based and1AT methodologies,Gcoral mea-

sured from coral cores spans multiple centuries (Lough and

Barnes, 2000) and so smoothes the stochastic nature of coral

growth and variations in reef accretion. Gcoral and Greef do

vary a great deal temporally. For example, diurnal fluctua-

tions may be up to fivefold and result in net dissolution at

night (e.g. Barnes, 1970; Chalker, 1976; Barnes and Cross-

land, 1980; Gladfelter, 1984; Constantz, 1986; McMahon et

al., 2013). The median ratio of light to dark calcification

rates is 3.0; however, measurements of dissolution in indi-

vidual corals are rarely reported (Gattuso et al., 1999). At in-

termediate timescales (weekly–monthly) Gcoral may vary by

a factor of 3, with a degree of seasonal chronology (Cross-

land, 1984; Dar and Mohammed, 2009; Albright et al., 2013).

Over longer timescales (≥ 1 yr), Gcoral is less variable (Bud-

demeier and Kinzie, 1976) and both Hatcher (1997) and

Perry et al. (2008) describe reef processes hierarchically

according to temporal and spatial scales, finding that time

spans of a year or more are required to study processes of

reef accretion. The numerous observations of Gcoral mea-

sured from coral cores is a further advantage over the sparse

census and 1AT determinations of Greef which are gener-

ally more costly and labour-intensive. More observations of

Greef are, however, essential to improve statistical power and

evaluation of model outputs. Greef is also invaluable from

a monitoring perspective (reviewed by Baker et al., 2008;

e.g. Ateweberhan and McClanahan, 2010) by providing an

effective measure of reef health that encompasses the whole

reef community and accounting for different relative compo-

sitions of corals and algae (Vroom, 2011; Bruno et al., 2014).

These benefits provide impetus for future measurements of

Greef, but our results demonstrate that a standardization of

the methodology (as demonstrated in Perry et al., 2013) must

be applied.

The four models used in this study all simplify the phys-

iological mechanisms of calcification to predict Gcoral and

Greef as a function of one or two external environmental vari-

ables. Calcification is principally a biologically controlled

process in corals (e.g. Puverel et al., 2005); occurring at

the interface between the polyp’s aboral layer and the skele-

ton, which is separated from seawater by the coelenteron

and oral layer (Gattuso et al., 1999). This compartmental-

ization means that the reagents for calcification (Ca2+ and

inorganic carbon species) must be transported from the sea-

water through the tissue of the coral polyp to the site of cal-

cification (reviewed in Allemand et al., 2011). Active trans-

port of Ca2+ bicarbonate ions (HCO−3 ) to the site of calci-

fication and removal of protons (H+) regulates the pH and

�a of the calcifying fluid (found between aboral ectoderm

and skeleton) and requires energy (reviewed in Tambutté et

al., 2011). Although the precise mechanism is unknown it

is thought that in light zooxanthellate corals derive this en-

ergy from the photosynthetic products (principally oxygen

and glycerol) of their symbionts, which is thought to par-

tially explain the phenomenon of light-enhanced calcifica-

tion (reviewed in Gattuso et al., 1999; Allemand et al., 2011;

Tambutté et al., 2011). Both the ReefHab and KAG models

use this relationship with light to determineGcoral. However,

corals that have lost their symbionts by “bleaching” continue

to show enhanced calcification in the light (Colombo-Pallotta

et al., 2010). As such, irradiance alone cannot account for

changes in Gcoral. Precipitation of aragonite from the cal-

cifying fluid has been assumed to follow the same reaction

kinetics as inorganic calcification with respect to �a (Hohn

and Merico, 2012), i.e. kp · (�a − 1)n (following Burton and

Walter, 1987). KAG and SILCCE both use this function of
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seawater �a in calculating calcification; however, despite

the logical connection between �a and Gcoral neither model

could reproduce observed Gcoral values. Inorganic precipita-

tion of aragonite increases linearly with temperature (Burton

and Walter, 1987) as does respiration in corals when oxygen

is not limited (Colombo-Pallotta et al., 2010). This temper-

ature dependence may explain the strong correlation found

by Lough (2008) between Porites growth and SST and the

skill LOUGH has shown in this study at reproducing Gcoral

observed values.

This study has shown that it is possible to predict global

variations in coral carbonate production rates (Gcoral) across

an environmental gradient with significant skill simply as a

function SST (LOUGH). However, the LOUGH model as-

sumes a linear relationship between SST and coral calci-

fication (Gcoral) whereas the increase in calcification as a

function of increased temperature obviously stops at a cer-

tain threshold. For example, there is substantive evidence of

declining coral calcification rates in recent decades coincid-

ing with increasing temperatures (e.g. Cooper et al., 2008;

De’ath et al., 2009, 2013; Cantin et al., 2010; Manzello,

2010; Tanzil et al., 2013). Further laboratory experiments

have found a Gaussian or bell-shaped response to increasing

temperature with optima between 25 and 27 ◦C (e.g. Clausen

and Roth, 1975; Jokiel and Coles, 1977; Reynaud-Vaganay

et al., 1999; Marshall and Clode, 2004). In contrast to the

linear SST relationship in LOUGH, Silverman et al. (2009;

SILCCE) use the Gaussian relationship found by Marshall

and Clode (2004) to modulate the rate of calcification de-

rived from inorganic calcification (Gi) calculated from �a.

But, the output from SILCCE is shown to be a poor predic-

tor of Gcoral or Greef in this study. While using the LOUGH

model alone is clearly not appropriate when applied to future

temperature simulations, environmental gradients in Gcoral

established using LOUGH could be modulated to account for

the physiological effect for heat-stress using degree-heating-

months (e.g. Donner et al., 2005; McClanahan et al., 2007)

or summer SST anomaly (e.g. McWilliams et al., 2005). This

approach would then account for the evidence that corals

exhibit widely differing temperature optima depending on

their temperature history or climatological-average temper-

ature (Clausen and Roth, 1975).

Since none of the models evaluated in this study showed

significant skill in capturing global patterns of Greef, none

of the models provide a reliable estimate of Gglobal. Suc-

cessful up-scaling of carbonate production to the reef (Greef)

and global domain (Gglobal) will require accounting for both

depth attenuation (e.g. light sensitivity) and inclusion of

population demographics affecting calcifier abundance. An

ecosystem modelling approach that captures demographic

processes such as mortality and recruitment, together with

growth, would result in a dynamically and spatially varying

estimate of live coral cover. It is also clear that a standardized

methodology for census-based measurements is required, as

evident from the improved model–data fit in a subset of data

collected using the ReefBudget methodology (Perry et al.,

2012). Coral calcification rates have slowed by an estimated

30 % in the last three decades (e.g. Bruno and Selig, 2007;

Cantin et al., 2010; De’ath et al., 2013; Tanzil et al., 2013)

reinforcing the pessimistic prognosis for reefs into the fu-

ture under climate change (e.g. Hoegh-Guldberg et al., 2007;

Couce et al., 2013; Frieler et al., 2013); numerical modelling

is an essential tool for validating and quantifying the severity

of these trends.

The Supplement related to this article is available online

at doi:10.5194/bg-12-1339-2015-supplement.
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