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Abstract. Large amounts of methane are delivered by flu-

ids through the erosive forearc of the convergent margin off-

shore of Costa Rica and lead to the formation of cold seeps

at the sediment surface. Besides mud extrusion, numerous

cold seeps are created by landslides induced by seamount

subduction or fluid migration along major faults. Most of the

dissolved methane migrating through the sediments of cold

seeps is oxidized within the benthic microbial methane filter

by anaerobic oxidation of methane (AOM). Measurements

of AOM and sulfate reduction as well as numerical modeling

of porewater profiles revealed a highly active and efficient

benthic methane filter at the Quepos Slide site, a landslide

on the continental slope between the Nicoya and Osa Penin-

sula. Integrated areal rates of AOM ranged from 12.9± 6.0

to 45.2± 11.5 mmol m−2 d−1, with only 1 to 2.5 % of the up-

ward methane flux being released into the water column.

Additionally, two parallel sediment cores from Quepos

Slide were used for in vitro experiments in a recently devel-

oped sediment-flow-through (SLOT) system to simulate an

increased fluid and methane flux from the bottom of the sed-

iment core. The benthic methane filter revealed a high adapt-

ability whereby the methane oxidation efficiency responded

to the increased fluid flow within ca. 170 d. To our knowl-

edge, this study provides the first estimation of the natural

biogeochemical response of seep sediments to changes in

fluid flow.

1 Introduction

Subduction zones represent large-scale systems of sediment

and element recycling. Organic carbon accumulation at con-

tinental margins can lead to the formation of large methane

reservoirs through its biological or thermogenic breakdown

(Judd et al., 2002; Schmidt et al., 2005; Hensen and Wall-

mann, 2005; Crutchley et al., 2014). Produced methane gas

may be transported upwards in solution by molecular diffu-

sion or by ascending fluids, mobilized by, for example, sedi-

ment compaction or clay mineral dehydration (Hensen et al.,

2004; Tryon et al., 2010; Crutchley et al., 2014). When the

fluids are highly enriched in hydrocarbon gases, gas hydrates

may precipitate depending on the pressure–temperature con-

ditions (Hensen and Wallmann, 2005). Gas hydrates some-

times block fluid pathways (Tryon et al., 2002; Minami et al.,

2012) and change the composition of fluids flowing through

the gas hydrate stability zone (GHSZ). Alternatively, disso-

ciating gas hydrates can act as additional sources of methane

and fluids (Kvenvolden, 2002) or dilute fluids when they dis-

solve (Hesse et al., 2000; Hensen et al., 2004).

The migration of methane-charged fluids towards the

sediment–water interface creates so-called “cold seeps”

(Judd et al., 2002; Suess, 2010). Within the surface sedi-

ment, the majority of the methane is consumed by the anaer-

obic oxidation of methane (AOM) (Hinrichs and Boetius,

2002; Knittel and Boetius, 2009). AOM is coupled to sul-

fate reduction and produces dissolved bicarbonate and sul-

fide. The reaction is mediated by a consortium of anaero-
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bic methanotrophic archaea (commonly known as anaerobic

methanotrophs, ANME) and sulfate-reducing bacteria (SRB)

(Boetius et al., 2000). Recent studies propose that some

ANME can reduce sulfate without the aid of SRB (Milucka

et al., 2012). Additionally, the use of other electron accep-

tors such as Mn, Fe (Beal et al., 2009), or nitrate (Ettwig et

al., 2010) is also possible. However, sulfate is the most abun-

dant electron acceptor in seawater and AOM coupled to sul-

fate reduction is, to our knowledge, by far the most important

anaerobic pathway for methane oxidation in marine settings

(Reeburgh, 2007).

The sediment zone, in which methane and sulfate con-

centrations overlap, is termed the sulfate–methane transi-

tion zone (SMTZ). The depth of the SMTZ is dependent

on (1) sulfate depletion resulting from organic matter degra-

dation (Borowski et al., 1999); (2) sulfate supply by diffu-

sion, bioirrigation and sulfide re-oxidation reactions (Dale et

al., 2009); (3) the flux of methane from below the SMTZ

(Borowski et al., 1996); and (4) the advective fluid flow rate

(Treude et al., 2003; Orcutt et al., 2011). At continental mar-

gins, the SMTZ can sometimes be located several hundreds

of meters below the seafloor (mbsf) (Borowski et al., 1999).

In coastal sediments, sulfate is consumed rapidly via organ-

oclastic sulfate reduction fueled by an enhanced supply of

organic matter, and, subsequently, the SMTZ is often located

closer to the sediment–water interface compared to sedi-

ments in greater water depths (Hinrichs and Boetius, 2002).

At seepage sites, upwards advective flow of methane-rich

fluid pushes the SMTZ closer to the surface, occasionally to

only a few centimeters below the seafloor (cmbsf) (Treude

et al., 2003; Niemann et al., 2006; Krause et al., 2014). At

the center of the Håkon Mosby mud volcano, advective fluid

flow is so high that it inhibits sulfate penetration into the sed-

iment (de Beer et al., 2006; Niemann et al., 2006), resulting

in the absence of a SMTZ. The depth of the SMTZ deter-

mines which chemolithotrophic seep organisms have access

to the produced sulfide. The prevailing communities serve as

indicators of seepage intensity. Sites covered by mats of sul-

fur bacteria (e.g., Beggiatoa) exhibit a very shallow SMTZ (a

few centimeters) compared to clam sites (e.g., Calyptogena)

with SMTZ depth of ∼ 5–10 cm, or even deeper SMTZ in

tubeworm or Solemya habitats (Sahling et al., 2002; Levin,

2003; Treude et al., 2003; Mau et al., 2006; Fischer et al.,

2012).

In the present study, we compared data from field mea-

surements, numerical modeling, and laboratory flow-through

experiments of samples taken at Quepos Slide, a submarine

landslide on the Pacific coast off Costa Rica (Bohrmann et

al., 2002; Karaca et al., 2012) in order to investigate the

effect of fluid flow on methane consumption and emission.

The numerical model was developed to compare with direct

measurements of AOM and sulfate reduction rates and to

determine the magnitude of the fluid advection velocity. In

laboratory experiments, undisturbed sediments from Quepos

Slide were exposed to different flow conditions, to investi-

gate the development of the SMTZ and the response of the

benthic microbial methane filter. For this objective, we used a

newly developed sediment-flow-through system, referred to

as SLOT (Steeb et al., 2014), which mimics natural fluid flow

regimes. It was the overall goal of this study to better under-

stand mechanisms controlling the efficiency of this methane

filter, which plays a major role in reducing greenhouse gas

emissions from the ocean into the atmosphere (Reeburgh,

2007).

Geological setting

At the Mid-American Trench, the Cocos Plate in the north

and Nazca Plate in the south are subducted below the

Caribbean Plate at a velocity of 8.8 cm yr−1 (Syracuse and

Abers, 2006). Here, seep features like mud volcanoes, mud

diapirs, and pockmarks are very abundant. More than 100

seeps localities have been identified at the central Costa

Rican Pacific Trench, on average one seep every 4 km

(Sahling et al., 2008). Recent high-resolution mapping has

revealed even greater seep density in this region (Kluesner

et al., 2013). Between the Nicoya (north) and Osa Penin-

sula (south), seamounts from the Nasca Plate are subducted

(Ranero and von Huene, 2000), resulting in slope failures and

landslides or scarps (e.g., Jaco Scarp, BGR landslide, GEO-

MAR landslide; Harders et al., 2011; Ranero et al., 2008).

Landslide-induced seeps are created by opening new struc-

tural and stratigraphical fluid pathways (Ranero et al., 2008;

Mau et al., 2012) or by gas hydrate dissociation resulting

from altered pressure and temperature conditions.

Fluids and related methane fluxes can vary both spatially

and temporally as well as in origin, composition, and flow

velocity. Temporal variations can be caused by gas hydrate

formation and dissociation (Hesse et al., 2000; Tryon et al.,

2002; Hensen et al., 2004; Minami et al., 2012) or triggered

by earthquakes, which are frequent in this active subduction

zone (Tryon et al., 2002; Hensen et al., 2004; Aiello, 2005;

Henrys et al., 2006; Mau et al., 2007; Fischer et al., 2013).

Well-known examples exhibiting such dynamics are the

twin mounds “Mound 11” and “Mound 12”, located at

1000 m water depth, halfway between the Nicoya and Osa

Peninsula. Both mounds are located at the same fault zone,

although they differ in fluid flow advection intensity (Hensen

et al., 2004; Linke et al., 2005; Karaca et al., 2010; Krause

et al., 2014), fluid origin (Hensen et al., 2004; Han et al.,

2004; Schmidt et al., 2005), and microbial activity (Krause

et al., 2014). In the last 50 kyr both mounds have displayed

individual active phases interrupted by phases of inactivity

(Kutterolf et al., 2008). In contrast to this long-term vari-

ability, Füri et al. (2010) observed a 2-month seepage event

at Mound 11 with flow rates that varied 4-fold (from 5 to

20 cm yr−1). Events like this affect the efficiency of the ben-

thic microbial methane filter and result in increased methane

concentrations in the water column. Slow adaptation to in-

creased methane supply may explain elevated methane con-
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centrations in the water column offshore of Costa Rica found

by Mau et al. (2007) in 2003, presumably caused by an earth-

quake earlier that year.

The research area of the present study, the Quepos Slide,

is located south of the twin Mounds 11 and 12. This land-

slide is approximately 9.5 km wide and 8 km long (Hard-

ers, 2011). The translational slide has a headwall 160 m in

height and the slide head is located at ∼ 400 m water depth

in the eastern Pacific oxygen minimum zone (OMZ; between

250 and 550 m water depth; Bohrmann et al., 2002). Four

tongues of the landslide can be identified, reaching down to

∼ 800 water depth, indicating three subsequent events fol-

lowing the initial slide (Bohrmann et al., 2002; Harders et

al., 2011). The Quepos Slide was most likely caused by

seamount subduction (Harders et al., 2011). Along the toe,

fluids and gas can migrate from hydrates inside the GHSZ.

Chemosynthetic organisms are abundant, with bacterial mats

present throughout, while authigenic carbonates and clams

can be found at deeper areas and at the toe of the slide

(Bohrmann et al., 2002). Directly below the headwall, the

sediments are covered by sulfur bacteria mats (Bohrmann

et al., 2002; Sahling et al., 2008; Karaca et al., 2012). Em-

pirical models show that vertical fluid flow at Quepos Slide

varies between 1 and 40 cm yr−1 and AOM rates vary be-

tween 1.5 and 42.1 mmol m−2 d−1 (Karaca et al., 2012). Ac-

cording to that model, 53 % (∼ 316× 103 mol yr−1) of the

dissolved methane is oxidized by the highly active benthic

microbial methane filter, while 47 % (280× 103 mol yr−1) is

released into the water column. Elevated methane concentra-

tions of 72 nmol L−1 were observed in the seawater directly

above the slide head (Bohrmann et al., 2002).

2 Methods

Surface sediments from Quepos Slide were obtained by a

video-guided multicorer (TV-MUC) during the GEOMAR

research cruise SO206 in June 2010 on the German re-

search vessel SONNE. Two sites (SO206-29 MUC, SO206-

31 MUC) from the headwall of Quepos Slide, both covered

by sulfur bacteria mats, were sampled (Table 1). All subsam-

pling procedures were performed onboard at 4 ◦C immedi-

ately after obtaining the sediments. Three replicate cores (in-

ner diameter 10 cm) of each TV-MUC were used for (1) pore-

water analyses, (2) ex situ AOM and sulfate reduction rate

assays, and (3) methane concentration determination. Addi-

tionally, two replicate cores of SO206-31 (MUC) were sub-

sampled for laboratory experiments (SLOT system; see be-

low).

2.1 Porewater measurement (ex situ)

Porewater of the ex situ samples was extracted by a pressure-

filtration system and filtered (argon 3–4 bar, 0.2 µm regen-

erated cellulose filters; Krause et al., 2014). Total alkalin-

Table 1. Sampling sites of the Quepos Slide and the SMTZ depth

in centimeters below seafloor (cmbsf).

Station Latitude Longitude Water depth Depth of SMTZ

(N) (W) (m) (cmbsf)

SO206-29 (MUC) 8◦51.29′ 84◦12.60′ 402 12.5-22.5

SO206-31 (MUC) 8◦51.12′ 84◦13.06′ 399 5.0–15.0

ity (TA) was analyzed onboard via titration (Ivanenkov and

Lyakhin, 1978). Sulfide was determined photometrically us-

ing the methylene blue method (Cline, 1969). Subsamples

for the determination of sulfate, chloride, and bromide were

frozen and analyzed onshore by ion chromatography (Com-

pact IC 761). Further porewater sampling and analytical pro-

cedures are described in detail by Krause et al. (2014).

2.2 Methane (ex situ)

For methane determination, 10 cm3 of sediment was trans-

ferred to 30 mL glass vials filled with 10 mL of 10 % KCl

for poisoning and headspace equilibration. The methane con-

centration was determined onboard by a gas chromatograph

coupled to a flame ionization detector (GC-FID) using a Shi-

madzu GC14A instrument fitted with a Restek Rt® Alumina

Bond/KCl capillary column (50 m, 0.53 mm ID) operated at

60 ◦C. N2 was used as a carrier gas.

2.3 Microbial rate measurement (ex situ)

Ex situ turnover rates of sulfate reduction and AOM were

determined with radiotracer techniques. For both sulfate

reduction and AOM, three replicate polycarbonate tubes

(26 mm inner diameter, 250 mm length) were subsampled

from one TV-MUC core and incubated by whole core in-

cubation (Jørgensen, 1978). Additional bulk sediment was

sampled to produce controls. Fifteen microliters of 14CH4

(1–2 kBq dissolved in anoxic, sterile water; specific activity

22.28 GBq mmol−1) and 6 µL of 35SO2−
4 (200 kBq dissolved

in water; specific activity 37 TBq mmol−1) were injected into

the AOM and sulfate reduction cores, respectively, at a verti-

cal resolution of 1 cm; the cores were then incubated for 24 h

in the dark at in situ temperature (8 ◦C). After incubation,

the sediment cores were sliced at 1 cm intervals and trans-

ferred to 20 mL of NaOH (2.5 % w/v, 40 mL glass vials with

rubber stopper) for AOM, and 20 mL of zinc acetate (20 %

w/v, 50 mL plastic vials) for sulfate reduction determina-

tions. Control samples (five each) were first transferred to

the respective chemicals before tracer was added (see above).

AOM was determined according to Treude et al. (2005) (GC

and combustion) and Joye et al. (2004) (14CO2 trapping).

Sulfate reduction was determined using the cold chromium

distillation method after Kallmeyer et al. (2004).
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2.4 Numerical model

Porewater profiles were simulated using a one-dimensional

transport reaction model, previously used and described by

Krause et al. (2014), to determine the flow velocity of the

fluid and the rate of AOM. Carbonate precipitation was im-

plemented in the model (Krause et al., 2014) but was not

used in the present study, since carbonate precipitation does

not affect the efficiency of the microbial benthic methane fil-

ter within the studied timescales (several months to years).

Because the sampling sites were located above the GHSZ

(Wallmann et al., 2012), dissolved methane concentrations

at the lower boundary were calculated from the equilibrium

concentration with free gas (Tishchenko et al., 2005). Table 2

provides an overview of other boundary conditions as well as

fitted, measured, and calculated parameters of the model.

2.5 Sediment-flow-through system

The response of the sediment to changes in fluid and methane

fluxes was studied using a newly developed sediment-flow-

through (SLOT) system (Steeb et al., 2014) which mimics

natural flow conditions with diffusive supply of sulfate at the

sediment surface and advective methane supply at the bot-

tom of the core. The system enables continuous monitoring

of geochemical gradients inside the sediment as well as in

the in- and outflow and allows the development of the geo-

chemical gradients and SMTZ to be observed. The efficiency

of the benthic microbial methane filter during the transient

periods can be calculated from the measured input and out-

put fluxes (see below). For the present study we focused only

on AOM – i.e., all incubations were kept strictly anoxic, as

AOM is the most important process for methane removal in

the sediment. The system has limitations, as it is not pressur-

ized and therefore does not generate methane concentrations

found in situ. The main interest in using it was to study the

response of AOM and the SMTZ to different fluid flow rates,

which should always be kept in mind when interpreting the

results. Please refer to Steeb et al. (2014) for more details on

the method’s advantages and disadvantages.

For SLOT experiments, two replicate multicorer cores

from station SO206-31 (MUC) were subsampled with spe-

cific SLOT liners (inner diameter 6 cm) (Steeb et al., 2014).

Liners were closed with rubber stoppers, sealed with electri-

cal tape, transported (4 ◦C) to the home laboratory and stored

at 0 ◦C in the dark until the experiment started (ca. 170 d af-

ter the MUC sampling). At GEOMAR, filters (glass fiber,

Whatman GF/F) were applied at the bottom of the sediment

core and at the lower and upper cap, as previously described

(Steeb et al., 2014).

The following experimentations were conducted at 10 ◦C

(the in situ temperature was 8 ◦C). Two different seawater

media were applied; one medium, resembling seawater, was

amended to natural sulfate concentrations (28 mmol L−1).

The added sulfate penetrated the surface sediment by diffu-

sion, except for when porewater subsamples were taken with

rhizons (see below), which temporarily facilitated a faster in-

trusion of sulfate-rich water from the supernatant and proba-

bly caused a smoothening of porewater profiles (Steeb et al.,

2014). The other medium, resembling sulfate-free seepage

fluid, carried dissolved methane (965± 180 µmol L−1) up-

wards into the bottom of the core by advection. Both media

were based on the sulfate reducer medium developed by Wid-

del and Bak (2006). In the “seepage” medium, MgSO4 was

replaced by MgCl. Both media were kept anoxic and con-

tained resazurin as an oxygen indicator (Visser et al., 1990),

with a pH adjusted to 7.5 and a salinity of 35 PSU. Bro-

mide served as an inert tracer for the upward migration and

was present only in the methane-enriched seepage medium

(800 µmol L−1). Hence, the depth where bromide and sulfate

concentrations overlapped was interpreted as the SMTZ. We

therefore used the sulfate–bromide transition zone (SBTZ)

as a proxy for the SMTZ and defined it as the zone with the

steepest SO2−
4 and Br− gradients. The composition of the

medium, as well as that of the gas headspace of the reser-

voirs, is summarized in Table 3.

SLOT experiments were performed with two sediment

cores under different flow regimes (Table 4). One core was

exposed to a relatively moderate advective fluid flow ve-

locity (10.6 cm yr−1), here further referred as the low-flow

core (LFC), whereas the other core was exposed to a 10-

fold higher advective fluid flow velocity (106.3 cm yr−1),

further referred as the high-flow core (HFC). The moderate

fluid flow velocities were on the same order as those deter-

mined by the numerical model (see Results). The high flow

velocities were more than twice of those previously reported

for Quepos Slide (40 cm yr−1; Karaca et al., 2012) and were

employed to observe the sediment response under extreme

fluid flow. Similar or even higher (up to 200 cm yr−1) advec-

tive flow velocities have been reported for seeps within the

same region (Hensen et al., 2004; Linke et al., 2005; Karaca

et al., 2010; Krause et al., 2014). The applied fluid flow ve-

locities were strong enough to observe considerable changes

within the time frame of 1 year yet weak enough to avoid

sulfate penetration to less than 1 cm.

In the initial preparation phase of the experiment (40 d),

the outflow of the system was located at the bottom of the

core and only methane-free seawater medium was pumped

from top to bottom at a pump rate of 20 µL min−1. This pro-

cedure was applied to establish a homogeneous sulfate dis-

tribution and anoxic conditions throughout the entire sed-

iment column without disturbing the sediment fabric, al-

though some sediment compaction might occur. In the sub-

sequent first experimental phase, the outflow was mounted

at the top of the core and seawater medium was delivered to

the overlying seawater at a pump rate of 20 µL min−1. From

this point, sulfate was transported into the sediment core

solely via diffusion, except for rhizon sampling (see above).

From the bottom, the seepage medium was supplied at

0.5 µL min−1 (LFC) and 5 µL min−1 (HFC) with an average
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Table 2. Summary of input parameters used for the model simulations and major model results. For the SO206-31 (MUC) cores, two fits

are provided, since the replicate core for porewater determinations (pw-fit) exhibited a lower fluid flow and deeper SMTZ than the core used

for rate determinations (hf-fit), probably as a result of high fluid flow heterogeneity at the site (see discussion). For more model details, see

Krause et al. (2014).

Parameter SO206-29 (MUC) SO206-31 (MUC) SO206-31 (MUC) Unit Parameter

pw-fit hf-fit source

Model parameter values

Length of core 32 44 44 cm measured

Length of simulated column 80 80 50 cm fitted

Number of model layers 160 200 200 set

Temperature 8 8 8 ◦C measured

Salinity 35 35 35 PSU measured

Pressure 41 41 41 bar measured

Porosity at sediment surface 0.95 0.93 0.93 measured

Porosity at the base of the sediment core 0.75 0.70 0.70 measured

Porosity at infinity sediment depth 0.74 0.70 0.70 fitted

Attenuation coef. for porosity decrease with depth 0.04 0.04 0.04 cm−1 fitted

Burial velocity at depth 0.02 0.02 0.03 cm yr−1 fitted

Fluid flow at the sediment–water interface 7 5 29 cm yr−1 fitted

Kinetic constant for AOM 200 000 25 000 100 000 cm3 mmol−1 yr−1 fitted

Kinetic constant for CaCO3 precipitation 0 0 0 yr−1 fitted

Density of dry solids in sediment 2.5 2.5 2.5 g cm−3 assumed

Kinetic constant for sulfide removal from porewater 0.02 0.1 0.005 mmol cm−3 yr−1 fitted

Attenuation coef. for decrease in sulfide removal rate 0.07 0.6 0.05 cm−1 fitted

Non-local mixing coefficient 1.5 0 80 yr−1 fitted

Depth of irrigated layer 15 0 2 cm fitted

Width of irrigated layer 5 0 1.5 cm fitted

Porewater concentration upper/lower boundary

Bottom water/bottom sediment SO2−
4

28/0 27/0 27/0 mmol L−1 measured

Bottom water/bottom sediment CH4 0/61 0/61 0/61 mmol L−1 calculated*

Bottom water/bottom sediment Cl− 558/380 548/320 548/320 mmol L−1 measured

Bottom water/bottom sediment HCO−
3

2.3/10 4.0/15 4.0/15 mmol L−1 measured

Bottom water/bottom sediment sulfide 0/0 0.03/0.00 0.03/0.00 mmol L−1 measured

Model results

Methane flux at sediment bottom 12.40 9.09 45.09 mmol m−2 d−1 modeled

Methane efflux at sediment–water interface 0.98 0.00 3.39 mmol m−2 d−1 modeled

Percentage of consumed methane 91.53 100.00 92.46 % modeled

Anaerobic oxidation of methane 11.35 9.09 41.69 mmol m−2 d−1 modeled

Measured turnover rates (radiotracer techniques)

Sulfate reduction (entire sediment depth) 13.38± 13.61 218.90± 159.80 218.90± 159.80 mmol m−2 d−1 measured

AOM (entire sediment depth) 12.87± 5.98 45.15± 11.48 45.15± 11.48 mmol m−2 d−1 measured

∗ Calculated after Tishchenko et al. (2005).

inflow methane concentration of 965± 180 µmol L−1. Based

on the pump rate, methane concentration, and surface area of

the sediment, a methane flux of 0.28 and 2.81 mmol m−2 d−1

was calculated for the LFC and HFC, respectively. These

methane concentrations were lower than those potentially en-

countered under in situ conditions because the cores were

not pressurized, resulting in lower methane fluxes (after

Tishchenko et al., 2005; Karaca et al., 2012). After 260 d the

first experimental phase ended and the pump rates were in-

creased from low to high flow velocities for the LFC, and

vice versa for the HFC. This switch marked the beginning of

the second and final experimental phase to study the response

of AOM to rapid changes in the flow regime. After 316 d,

the experiment was terminated and the cores were sliced and

subsampled for further analyses (see below).

Methane emission from the sediment was calculated by

multiplying the outflow methane concentrations (CH4out) by

the dilution factor (DF; 41 and 5 for LFC and HFC, respec-

tively) and the fluid flow (v; 10.6 and 106.3 cm yr−1 for LFC

www.biogeosciences.net/12/6687/2015/ Biogeosciences, 12, 6687–6706, 2015
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Table 3. Salt concentrations of the two different media used in the

SLOT system. Seawater medium with sulfate was delivered from

the top, whereas the seepage medium with methane and without

sulfate was delivered from the bottom. In the last line, the gas in the

respective medium’s headspace is denoted.

Salts Seawater medium Seepage medium

(all in mmol L−1) (with SO2−
4

) (with CH4)∗

KBr 0.006 0.756

KCl 8.05 8.05

CaCl2 · 2H2O 10.0 10.0

MgCl2 · 6H2O 27.9 55.5

MgSO2 · 7H2O 27.6 0.000

NaCl 451 451

Medium headspace N2 CH4

∗ FeSO4 (trace element) was replaced by FeCl (compare with Widdel and Bak,

2006)

Table 4. Overview of conditions during SLOT experiments:

methane concentration of the “seepage” medium, methane flux, ad-

vective flow, and pump rate in the low- and high-flow core as well

as experimental phases and run times under the low- and high-flow

regime. The length of the sediment cores was 15 (LFC) and 14 cm

(HFC).

Low-flow High-flow

regime regime

Methane (µmol L−1) (seepage medium) 965± 180

Methane flux* (mmol m−2 d−1 ) 0.28 2.81

Advective flow (cm yr−1 ) 10.6 106.3

Pumping rate (µ L min−1) (seepage medium) 0.5 5

Hydrological residence time (HRT) 1080 108

Experimental phase Total time Phase time

Initial −40–0 40

Phase 1 0–258 258

Phase 2 258–350 92

∗ Calculated by the methane concentration of the seepage medium multiplied by the advective

flow.

and HFC, respectively) according to Eq. (1)

CH4out [mmolm−2 d−1
] = v [cmyr−1

]

·CH4out [mmolcm−3
] ·DF ·

10 000

365.25
. (1)

Areal AOM rates were calculated from the difference be-

tween in- and outflow of methane before (258 d) and af-

ter (316 d) fluid flow change. Therefore the methane efflux

(Eq. 1) was subtracted from the methane flux (Table 4).

2.6 Geochemical parameters during SLOT

experimentation

During the SLOT experiments, geochemical parameters were

measured in 1 cm depth intervals throughout the sediment

core. In addition, concentrations in the in- and outflowing

fluids were monitored. Sulfide concentrations, pH, and re-

dox potential were measured with microsensors (sulfide nee-

dle sensor, H2S-N, tip diameter 0.8 mm, Unisense; pH, MI

411 B, gauge 20, Microelectrodes Inc.; redox potential nee-

dle sensors, MI-800, gauge 25, Microelectrodes Inc.). Pore-

water samples (1.5–2 mL) for the determination of sulfate,

bromide, and total alkalinity were obtained from each depth

in the sediment using pre-installed rhizones (CSS-F, length

5 cm, diameter 2.5 mm, pore size 0.2 µm, Rhizosphere®).

The in- and outflow of both cores were sampled with glass

syringes for the determination of sulfate, bromide, total alka-

linity and methane concentration. All sampling and measure-

ment procedures for the experiment are described in detail by

Steeb et al. (2014). Given a removal of 8.1 % porewater dur-

ing each rhizon sampling, which causes mixing with adjacent

layers, and an analytical precision of < 1 % (ion chromatog-

raphy) and 0.1 % (total alkalinity titration), we estimated a

total analytical uncertainty of ca. 9 % for sulfate and bromide

and 8.2 % for total alkalinity.

2.7 Experiment termination and final sampling

At the end of the experiment, 1.5 mL porewater from each

depth was sampled for determinations of sulfide (0.5 mL),

sulfate and bromide (0.5 mL) as well as total alkalinity

(0.5 mL) and analyzed using the same methods as the ex situ

porewater (see Sect. 2.1).

After the final porewater sampling, sediment subsamples

were taken from each SLOT core. Two subcores (polycar-

bonate, length 260 mm, inner diameter 26 mm) were col-

lected from each SLOT core for radiotracer determinations of

AOM and sulfate reduction and treated according to the pro-

tocols mentioned above. For the determination of methane

concentrations, each SLOT core was sampled at 1 cm in-

tervals (2 cm3 volume subsamples) using cut-off syringes

(3 mL, PE). The sediment samples were transferred into glass

vials (13 mL) with 5 mL of 2.5 % w/v NaOH. Vials were

closed with butyl rubber stoppers and shaken directly af-

ter sampling. Methane was analyzed by gas chromatogra-

phy (Hewlett Packard Series II) with a packed column (Haye

SepT, 6 ft, 3.1 mm inner diameter, 100/120 mesh, Resteck;

carrier gas: He 20 mL min−1; combustion gas: synthetic air

240 mL min−1, H2 20 mL min−1).

The remaining sediment of each SLOT core was sampled

in 2 cm depth intervals. For porosity measurements, approx-

imately 2 cm3 samples were obtained using cut-off syringes

(3 mL, PE), transferred to pre-weighed vials, and weighed

before and after the sample was freeze-dried. Porosity was

then calculated by the difference in weight (Dalsgaard et al.,

2000). Subsamples of the dried sediment were used to deter-

mine total carbon (TC), total nitrogen (TN), total sulfur (TS)

and total organic carbon (TOC) of the solid phase. TC, TN,

TS, and TOC were analyzed using a Carlo Erba NA 1500 el-

emental analyzer. For TOC determination, inorganic carbon

was removed by adding hydrochloric acid. Total inorganic
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carbon (TIC) was calculated from the difference between TC

and TOC. All solid-phase analyses were carried out in dupli-

cates.

Further details on the SLOT sampling procedure and ana-

lytical procedures are described in Steeb et al. (2014).

3 Results

3.1 Ex situ profiles and numerical models

Both MUC cores (SO206-29 MUC and SO206-31 MUC)

were sampled at ∼ 400 m water depth from sediments cov-

ered with sulfur bacteria mats, which are indicative of high

methane fluxes (Torres et al., 2002; Treude et al., 2003).

At station SO-206-29 (MUC), sulfate decreased from

28 mmol L−1 at the sediment surface to zero at the bot-

tom of the core (26 cmbsf) (Fig. 1a). Conversely, methane

concentrations were low (0.0–0.1 mmol L−1) in the upper

15 cmbsf and increased below this zone to a maximum

of 2.4 mmol L−1 at the bottom (Fig. 1a). Accordingly, the

SMTZ was located at 17.5 cmbsf. Two maxima in sul-

fate reduction rates were identified in one of the replicate

cores at the top (up to 1821 nmol cm−3 d−1) and between

12.5 and 22.5 cmbsf (up to 879 nmol cm−3 d−1) (Fig. 1b).

AOM coincided with the second sulfate reduction maximum

and reached rates of up to 569 nmol cm−3 d−1 (Fig. 1c).

Sulfide and total alkalinity (TA) increased from the top

(0.0 mmol L−1 and 2.5 meq L−1, respectively) to a maximum

within the SMTZ (7.9 mmol L−1 and 23.4 meq L−1, respec-

tively, at 17.5 cm sediment depth) (Fig. 1d). Areal turnover

rates of methane and sulfate integrated over the entire sed-

iment depth of 26 cm were similar for AOM (on average

12.87± 5.98 mmol m−2 d−1) and sulfate reduction (on aver-

age 13.38±SD 13.61 mmol m−2 d−1), with a ratio of 0.96

(AOM : sulfate reduction).

The steady-state model resulted in a fluid flow of

7 cm yr−1 and an areal AOM rate of 11.35 mmol m−2 d−1

(Table 2). In total, around 92 % of the delivered methane was

oxidized by AOM and ∼ 8 % was released to the seawater.

Fitted porewater profiles and AOM rates are shown in Fig. 1.

In the second core, SO206-31 (MUC), sulfate decreased

to 0 mmol L−1 within the first 15 cm sediment depth, and

considerable methane concentrations (> 3.4 mmol L−1) were

observed at 5 cmbsf (Fig. 2a). The observed maximum

methane concentration was 10.2 mmol L−1 (20.5 cmbsf).

Accordingly, the SMTZ was located at approximately

5–15 cmbsf Sulfate reduction and AOM occurred be-

tween 0 and 12.5 cmbsf with a sulfate reduction max-

imum (12052 nmol cm−3 d−1) at the top of the SMTZ

(∼ 2.5 cmbsf) and an AOM maximum (1400 nmol cm−3 d−1)

in the upper part of the SMTZ (5.5 cm cmbsf) (Fig. 2b,

v). Highest sulfide and TA concentrations were measured

within the SMTZ between 10 and 15 cmbsf (8.6 mmol L−1

and 24.1 meq L−1, respectively) (Fig. 2d). Areal sulfate

reduction rates integrated over the entire sediment depth

of 25 cm (218.90± 159.80 mmol m−2 d−1) were around 5

times (AOM : SR= 0.21) higher compared to the areal rates

of AOM (45.15± 11.48 mmol m−2 d−1) integrated over the

same depth.

Replicate cores from SO206-31 taken for porewater and

rate analyses showed a different depth of the SMTZ and the

AOM peak, respectively. Based on this lateral heterogene-

ity, two different fits of AOM were applied in the numeri-

cal model: one for the porewater core (pw-fit) and one for

the rate core (hf-fit), which required a higher fluid advec-

tion to align the modeled and measured AOM (for details

see Table 2). The pw-fit with 7 cm yr−1 fluid flow showed an

efficient benthic filter which oxidized all delivered methane

(9.09 mmol m−2 d−1). The hf-fit (29 cm yr−1) had an AOM

rate of 41.69 mmol m−2 d−1 and oxidized around 93 % of the

delivered methane (45.09 mmol m−2 d−1). Model results are

shown in Fig. 2 and summarized in Table 2.

3.2 SLOT incubation experiments

For the SLOT incubations, two replicate cores from SO206-

31 (MUC) were used.

3.2.1 Evolution of biogeochemical parameters during

the main phase of the experiment (0–260 d)

The low fluid flow regime core

In the LFC incubations, bromide concentration, which was

used as a tracer to track the seepage medium, was always

very low and near the detection limit (20 µmol L−1). Val-

ues increased only weakly in the lowest 5 cm of the core,

reaching a maximum of 45 µmol L−1 after 49 d (Fig. 3d). Af-

ter 105 d, a small concentration of bromide (< 3 mmol L−1)

appeared in the supernatant, which later (171 d) disap-

peared again. Sulfate, which was delivered from the top

by diffusion, decreased only slightly at the bottom of the

core (27.2 mmol L−1) due to a slow advection of methane-

enriched seepage medium. This was in accordance with

the small increase in bromide (up to ∼ 45 µmol L−1). Af-

ter 105 d, sulfate levels stabilized around 26 mmol L−1 at the

bottom of the core and did not further decrease during the

low-flow phase.

In the first 105 d, sulfide concentrations of the LFC var-

ied between 23 and 300 µmol L−1 over depth with a maxi-

mum between 9 and 11 cm (Fig. 3b, e, h). After 171 d, a sul-

fide peak (920 µmol L−1, Fig. 3k) occurred at 0.26 cm sed-

iment depth, while no sulfide was detected in the overly-

ing water. Below the peak, sulfide varied between 300 and

500 µmol L−1. Thirty days later (201 d of runtime), maxi-

mum sulfide concentrations of up to 230 µmol L−1 were ob-

served between 1.5 and 10.7 cm sediment depth (Fig. 3n).

After 258 d, directly before changing from low to high fluid

flow, maximum sulfide concentrations were 115 µmol L−1
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Figure 1. Depth profiles of measured and modeled porewater parameters and microbial turnover rates for SO206-29 (MUC), sampled from

402 m water depth. (a) Measured (diamonds) and modeled (thick green line) sulfate concentrations (per Vol porewater), as well as measured

(circles) and modeled (thick blue line) methane concentrations (per Vol sediment). (b) Three replicates (thin lines and symbols) of measured

sulfate reduction rates (per Vol sediment). (c) Three replicates of measured (thin lines and symbols) and modeled (thick line) AOM rates (per

Vol sediment). (d) Measured (triangles) and modeled sulfide concentration (thick orange line), as well as measured (squares) and modeled

(thick grey line) total alkalinity (per Vol porewater).
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Figure 2. Depth profiles of measured and modeled porewater parameters and microbial turnover rates for SO206-31 (MUC) sampled from

401 m water depth. Thick solid lines: pw-fit model; thick dashed lines: hf-fit model (for details see Results). (a) Measured (diamonds) and

modeled (thick green lines) sulfate concentrations (per L porewater), as well as measured (circles) and modeled (thick blue lines) methane

concentrations (per L sediment). (b) Three replicates (thin lines and symbols) of measured sulfate reduction rates (per cm−3 sediment).

(c) Three replicates of measured (thin lines and symbols) and modeled (thick lines) AOM rates (per cm−3 sediment). (d) Measured (triangles)

and modeled (thick orange lines) sulfide concentration, as well as measured (squares) and modeled (thick grey lines) total alkalinity (per L

porewater).

at 4.5–5.5 cmbsf (Fig. 3q) and decreased to a minimum of

36 µmol L−1 near the sediment–water interface.

TA was predominantly lower inside the cores than in the

media (30 meq L−1). During the LFC incubation, TA contin-

uously decreased over the time from ∼ 30 to ∼ 24 meq L−1

below ∼ 9 cm (Fig. 3b, e, h, k). After 171 d, TA varied be-

tween 28.7 and 21.7 meq L−1. Directly before the change of

fluid flow (258 d), TA increased from the top (23.3 meq L−1)

to the bottom (26.7 meq L−1; Fig. 3q).

Initial redox potential of the LFC was −50 mV at the top

and around −150 mV below 2 cm sediment depth (Fig. 3c).

After 49 d, the redox potential was more negative (−130 mV

at top and between−160 and−270 mV below, Fig. 3f); after

105 d, the redox potential increased to −80 mV at the top

(Fig. 3i). Between 171 and 202 d of runtime, the overlying

water of the core showed a pink color caused by the oxygen

indicator resazurin. At the same time, the redox potential was

positive (between 150 and 100 mV) at the sediment–water
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Figure 3. Sulfate and bromide concentrations (left panels), sulfide and total alkalinity concentrations (middle panels), and redox potential and

pH (right panels) measured in the sediment of the low-flow regime core (LFC) from Quepos Slide after different days of runtime indicated

on the left. All concentrations are presented as per liter of porewater. Please note the different scales for sulfide concentrations.

interface (Fig. 3l, o), probably as a result of oxygen intrusion.

Nevertheless, free oxygen should result in a redox potential

> 350 mV (Schulz, 2000). We therefore assume that oxygen

was only temporally available and rapidly consumed. Deeper

inside the sediment, redox potential reached values between

−200 and −400 mV (Fig. 3l, o).

Directly before changing the fluid flow (258 d), the redox

potential of the LFC was −100 mV in the overlying water

and around −200 mV inside the sediment (Fig. 3r).

After 171 d of runtime, pH was highest at the sediment–

water interface (8.2, Fig. 3l) and around 7.6 deeper in the

sediment. Final pH before fluid flow swapping (258 d) de-

creased from 7.6 at the top to 7.1 at the bottom of the core

(Fig. 3r).

Methane concentrations in the outflow of the LFC started

at 1.5 µmol L−1 (29 d) and increased to 2.5 µmol L−1 after

105 d before decreasing again to 0.9 µmol L−1 after 258 d

(Fig. 5). Calculated methane efflux followed the methane

concentration trend. The LFC methane efflux was between

0.011 and 0.030 mmol m−2 d−1. AOM rates from the differ-

ence of in- and outflow were 0.269 mmol m−2 d−1, directly

before changing the fluid flow regime. However, this rate
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must overestimate the actual AOM activity, because the core

did not reach steady state before the fluid flow change, as

the bromide front did not reach the sediment–water interface

(see discussion).

The high fluid flow regime core

In the HFC, bromide quickly appeared after 21 d

(400 µmol L−1) at the bottom of the core (Fig. 4a).

Bromide concentration continuously increased from the

bottom towards the top of the core until a chemocline

developed between 4 and 10 cm sediment depth after 105 d

(Fig. 4g). This chemocline persisted during the remaining

experiment and moved slowly upwards reaching a zone

between 1 and 6 cm depth after 258 d (Fig. 4a, d). Sulfate

concentrations during the HFC period were opposite to the

bromide distribution and coincided with the chemocline.

Sulfate continuously decreased towards the bottom of the

core reaching the minimum concentration (0.2 mmol L−1)

after 201 d (Fig. 4m). Simultaneously, sulfate was more

and more displaced from the bottom to the top of the core,

decreasing from 28.5 to 12 mmol L−1 at the sediment–water

interface.

Sulfide concentrations were considerably lower compared

to the LFC. At the beginning (21 d), sulfide increased from

the top (27 µmol L−1) to 6 cm sediment depth (70 µmol L−1)

within the developing SBTZ (Fig. 4b), which was used as

proxy for the SMTZ, and was constant at this level below

6 cm sediment depth. In the following months, sulfide de-

creased below 20 µmol L−1 (105 d) and increased rapidly af-

ter 171 d of runtime at the top of the core to more than

500 µmol L−1 (Fig. 4k). In the following months, sulfide con-

centrations decreased again at first to maximum values of

300 µmol L−1 (4 cm sediment depth, 202 d of runtime) and

to less than 60 µmol L−1 after 258 d (Fig. 4q).

TA in the HFC showed similar trends to the LFC. Near the

start (21 d), TA decreased from 29 to 30 meq L−1 at the top of

the core to 26–27 meq L−1 at the bottom (Fig. 4b, e, h). After

171 d, this distribution reversed with TA increasing from the

top of the core to the bottom, from 21–26 to 24–27 meq L−1

(Fig. 4k).

The redox potential of the HFC was, similar to the LFC,

highest at the sediment–water interface and in the overlying

water and lowest at larger depths of the core. Initially (21 d),

redox potential was −85 mV at the sediment–water interface

and between −100 and −150 mV in the sediment (Fig. 4c).

Over time, the redox potential in the sediment became more

negative, reaching a value as low as −385 mV after 105 d

(Fig. 4i, l). Between 105 and 202 d of runtime, the overly-

ing water turned pink and showed a redox potential ranging

from 100 to 200 mV (Fig. 4q), indicating oxygen contamina-

tion in the core. Directly before the change in fluid flow, the

redox potential returned to negative values, with−120 mV in

the overlying water and around −200 mV in remaining core

(Fig. 4r).

Similar to the LFC, the pH was highest at the sediment–

water interface and lower inside the sediment (8.1–7.8 af-

ter 171 d and 8.0–7.4 after 202 d; Fig. 4l, o). Directly be-

fore the fluid flow change (258 d), pH decreased to 7.6 at

the sediment–water interface and 7.1–7.3 inside the sediment

(Fig. 4r).

Methane concentration in the HFC outflow was initially

(21 d) 7.5 µmol L−1 and then decreased to 1.7 µmol L−1

during the following 200 d. After 258 d of runtime,

methane concentration in the outflow increased again to

2.8 µmol L−1. Efflux of the HFC ranged from 0.025 to

0.109 mmol m−2 d−1. Corresponding calculated AOM rates

were 2.77 mmol m−2 d−1 directly before changing the flow

rate (258 d).

3.2.2 Biogeochemical responses after changing the fluid

flow regime (260–350 d of runtime)

After 260 d, the fluid flow in the cores was swapped from low

to high and vice versa.

New high-flow regime core

In the new high-flow regime core (NHFC, formerly LFC)

sulfate and bromide concentrations did not change consider-

ably over the entire runtime (350 d). TA remained constant at

25 meq L−1 (Fig. 3t). Sulfide concentrations were highest at

0.3 cm sediment depth (1230 µmol L−1) and first decreased

steeply followed by a more steady increase (below 3 cm)

with the exception of a second maximum (625 µmol L−1)

at 5 cm. At the bottom of the core, a sulfide concentration

of max 75 µmol L−1 was reached. Redox potential was pos-

itive (31 mV) in the overlying water and between −280 and

−330 mV within the sediment (Fig. 3u). The pH decreased

from 8.5 to 7.5 between the sediment–water interface and

the bottom of the core.

Methane concentration of the outflow increased consider-

ably from 0.9 to 11.6 µmol L−1 after 316 d run time (Fig. 5).

Calculated methane effluxes were 0.165 mmol m−2 d−1 and

corresponding AOM rates were 2.64 mmol m−2 d−1. Similar

to the LFC, the AOM rate is most likely overestimated, as the

core did not reach steady state (see discussion).

New low-flow regime core

In the new low-flow regime core (NLFC, formerly HFC),

sulfate penetrated deeper and bromide ascended less into the

sediment as compared to the profile prior to fluid flow change

(Fig. 4s). Sulfide concentrations remained low, between 50

and 80 µmol L−1, and TA varied between 23 and 25 meq L−1

(Fig. 4t). Redox potential was positive (150 mV) at the

sediment–water interface and the upper sediment (Fig. 4u).

Below 2 cm sediment depth, redox decreased to values be-

tween −200 and −400 mV. The pH profile decreased from

8.05 in the overlying water and at the sediment–water inter-

face down to 7.55 below 6 cm sediment depth.

Biogeosciences, 12, 6687–6706, 2015 www.biogeosciences.net/12/6687/2015/



P. Steeb et al.: Quepos Slide SLOT system 6697

Figure 4. Sulfate and bromide concentrations (left panels), sulfide and total alkalinity concentrations (middle panels), and redox potential

and pH (right panels) measured in the sediment of the high-flow regime core (HFC) from Quepos Slide after days of runtime indicated on

the left. The SBTZ as proxy for the SMTZ is highlighted by the grey bar. All concentrations are presented as per liter of porewater. Please

note the different scales for sulfide concentrations.

Methane concentrations in the outflow declined from 2.8

to 0.7 µmol L−1 (Fig. 5). Calculated methane effluxes were

0.009 mmol m−2 d−1 with a corresponding AOM rate of

0.271 mmol m−2 d−1.

3.2.3 Biogeochemical parameters after experiment

termination

After 350 d of runtime, the experiment was terminated, pore-

water was sampled, and the sediment subsampled for fur-

ther analyses. In both cores, methane concentrations deter-

mined after experiment termination (around 2.5 µmol L−1)

were only a minor fraction of the original inflow con-

centration (965 µmol L−1), which was probably mostly at-

tributed to methane losses during porewater extraction us-

ing rhizones directly before sediment sampling (Steeb et

al., 2014). In the NHFC (formerly LFC) methane concen-

trations varied between 2 and 4 µmol L−1, with a slight

increase towards the bottom of the core (Fig. 6a). Sul-

fate concentrations decreased slightly from 29.5 mmol L−1

at the top to 26.2 mmol L−1 at the bottom of the core

(Fig. 6b). Sulfide increased from 50 mmol L−1 at the sed-
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Figure 5. Methane concentration (µmol L−1) in the outflow (a,

d), methane efflux (mmol m−2 d−1; b, e), and calculated AOM

rate (mmol m−2 d−1; c, f) of the SLOT system before and af-

ter changing the fluid flow regime: (a, b, c) low-flow regime

core (LFC) and (d, e, f) high-flow regime core (HFC) from Que-

pos Slide. Vertical lines mark the moment of fluid flow change

(low flow → high flow and vice versa at 258 d of runtime). Er-

ror bars ((a, d)) show standard deviations of three repeated gas

chromatographic measurements; the first two data points represent

single measurements. Dotted lines represent the trend line (low-

flow regime: 5× 10−6
×t2

runtime
+ 0.02truntime+ 0.285, r2

= 0.825;

high-flow regime: 0.8576× ln(truntime)− 0.8662, r2
= 0.987) of

methane concentration development until flow change.

iment surface (0.3 cm) to a maximum of 125 µmol L−1 at

6 cm and decreased to 80 µmol L−1 at the bottom of the

core (Fig. 6c). AOM rates of the NHFC determined by ra-

diotracer techniques showed highest values between 4 and

10 cm sediment depth (0.50–0.91 nmol cm−3 d−1) and, in ad-

dition, increased from top (0.10 nmol cm−3 d−1) to bottom

(0.33 nmol cm−3 d−1). Areal turnover rates of methane and

sulfate integrated over the entire sediment core (0–15 cm)

were 0.043 and 2.31 mmol m−2 d−1 for AOM and sulfate re-

duction, respectively.

In the NLFC (formerly HFC), methane concentrations re-

mained consistently low at around 2–4 µmol L−1 (Fig. 7a).

Sulfate was between 27 and 28.5 mmol L−1 within the

upper first 6 cm and then decreased to 10 mmol L−1 be-

low this depth (Fig. 7b). Consistent with the steepest

decrease in sulfate, sulfide increased to a maximum of

42 µmol L−1. Highest AOM rates determined with radio-

tracer techniques were detected between 5 and 11 cm (0.4–

1 nmol cm−3 d−1, Fig. 7a). Sulfate reduction rates ranged

from 16.95 to 27.71 nmol cm−3 d−1 in the upper sediment

(0–6 cm depth) and decreased to 7.96 nmol cm−3 d−1 at the

bottom, which corresponded to a simultaneous decrease in

sulfate at the bottom of the core (Fig. 6a). Areal rates in-

tegrated over the entire sediment depth (14 cm) were 0.042

and 2.494 mmol m−2 d−1 for AOM and sulfate reduction, re-

spectively.
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Figure 6. Solute concentrations and turnover rates in the new high-

flow regime core (NHFC) after experiment termination (358 d of

runtime). Porewater profiles of methane (a, crosses), sulfate (b,

crosses), sulfide (c, circles), and results of the radiotracer measure-

ments for AOM (a, bars) and sulfate reduction (b, bars) are shown.
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Figure 7. Solute concentrations and turnover rates in the new low

flow core (NLFC) after experiment termination (358 d of runtime).

Porewater profiles of methane (a, crosses), sulfate (b, crosses), and

sulfide (c, circles) as well as results of the radiotracer measurements

for AOM (a, bars) and sulfate reduction (b, bars) are shown.

The TC contents were similar in both the NHFC and

NLFC and varied between 4.97 and 6.05 dry wt. % (Fig. 8a,

Fig. 9a). A carbon peak (6.05 dry wt. %, 7 cm sediment

depth) resulted from higher TIC (3.09–3.16 dry wt. %) in

both cores. TOC (2.90–3.62 dry wt. %) of the NHFC and

NLFC did not differ considerably from ex situ data (2.91–

3.40 dry wt. %). Atomic C / N ratios were higher in both

flow-through cores (8.67–9.43) compared to ex situ values

(7.61–8.88), while TS was slightly lower (0.82–1.18 com-

pared to 0.94–1.27 dry wt. %), especially in the upper region

(0–2 cm) of the NHFC (0.84 compared to 1.11 dry wt. %)

and showed, in contrast to the ex situ cores, no minimum

at 4.5 cm sediment depth (Figs. 8c and 9c).

4 Discussion

4.1 The impact of fluid seepage and related processes

on porewater gradients

Quepos Slide sediment cores that were studied ex situ

showed a SMTZ and AOM peaks within the upper 20 cm

of the sediment (Fig. 2). We are therefore confident that
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Figure 8. Sediment solid-phase parameters measured in the sediment of the ex situ replicate SO206-31 (MUC) core (grey lines and symbols)

compared to the NHFC (originally LFC, black lines and symbols). Total carbon content (TC, diamonds) and total inorganic carbon content

(TIC, circles) in dry wt. % (a), atomic C / N ratio (circle) and total organic carbon content (TOC, triangles) in dry wt. % (b), total nitrogen

(TN, diamonds) and total sulfur (TS, circles) in dry wt. % (c), and porosity of the sediment (d).
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nitrogen (TN, diamonds) and total sulfur (TS, circles) in dry wt. % (c), and porosity of the sediment (d).

the SLOT experiments (core length 14–16 cm) contained

the most active zone of the benthic methane filter. Dur-

ing the experiments, the depth of the SBTZ, as proxy for

the SMTZ, was controlled by fluid flow and migrated over

time. Fluid flow velocity in the low-flow regime core (LFC,

10.6 cm yr−1) was in the same range of fluid flow modeled

from the ex situ data (5–29 cm yr−1). In the high-flow regime

core (HFC, 106 cm yr−1), the fluid flow was 2 to 10 times

higher compared to our modeled data and also higher than

other values published for Quepos Slide (1–40 cm yr−1, Ta-

ble 5; Karaca et al., 2012); however, the flow was still in the

range of neighboring seeps (0.1–200 cm yr−1; Hensen et al.,

2004; Linke et al., 2005; Karaca et al., 2010; Krause et al.,

2014). During the entire LFC/NHFC experiment no SBTZ

developed, and consequently no steady state was reached.

The missing evolution of a SBTZ was probably the result

of a high hydrological residence time of the seepage medium

(696 d for the LFC and 69 d for the NHFC), which in this case

means the average time for the fluid to pass the water volume

below the core and the entire sediment core. Nevertheless,

small amounts of the seepage fluid obviously passed through

the entire sediment, probably facilitated through channeling

(Torres et al., 2002; Wankel et al., 2012), as demonstrated by

the presence of methane in the outflow (Fig. 5) and bromide

in the supernatant (Fig. 3g). The fraction of seepage medium

(calculated from Br− concentration) emitted, relative to the

total inflow seepage volume of the LFC, increased from 0

to 2.5 % in the last phase (260 d) and further increased to

4 % after the system was changed to high flow (NHFC). Low

AOM activity was detected over the entire core after experi-

ment termination, with highest turnover between 7 and 9 cm

sediment depth, while methane concentrations stayed con-

tinuously low around 2–3 µmol L−1 over the entire core (see

sampling artifacts, Sect. 3.2.3.). In the HFC experiment, the

SBTZ and related AOM activity was much more pronounced

than in the LFC. The SBTZ moved upwards from 14 cm

(max. depth) to < 6 cm and dropped down to 10 cm sediment

depth during the subsequent low-flow phase (NLFC). Dur-

ing the first phase, fluids and SBTZ showed continuous mi-

gration, which was fast initially and became slower towards

the end. The relatively stable depth of the SBTZ at the end

of the first experimental phase (0–260 d) indicated the transi-
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tion to a quasi-steady-state situation. Highest AOM rates, de-

termined by radiotracer measurements after experiment ter-

mination, were found within this SBTZ (6–10 cm sediment

depth).

Sulfide concentrations of the HFC were generally high-

est within the SBTZ. In the LFC experiment, sulfide peaks

were relatively broad and not very distinct, which was prob-

ably the result of a broad dispersive mixing layer between

seepage and seawater medium. Due to the low fluid flow,

higher sulfide concentrations evolved in the LFC as com-

pared to the HFC, where sulfide was probably flushed out

before it accumulated. Relatively low sulfide concentrations

were also observed at Mound 11, a seep site with high AOM

and sulfate reduction activity and high fluid flow (Hensen et

al., 2004; Krause et al., 2014). In the LFC experiments, sul-

fide concentrations fluctuated over time. While the increase

in sulfide concentration was most likely correlated with en-

hanced sulfate reduction, a decrease could be caused by the

precipitation of metal sulfides and/or by microbial oxidation

of sulfide (chemosynthesis). Precipitation of metal sulfides

is correlated with a drop in pH (Glud et al., 2007; Preisler

et al., 2007), as was observed in our study. Oxygen and ni-

trate are important electron acceptors for microbial oxida-

tion of sulfide in seep habitats. However, free oxygen was

probably available only temporally (if at all) in the over-

lying water of the core due to a sampling artifact (see re-

sults), which was in accordance with a redox potential of

less than 300 mV (Schulz, 2000). Moreover, sulfide oxida-

tion with oxygen would create a drop in pH. Conversely, pH

increased in the surface sediment, which could be caused by

sulfide oxidation via dissimilatory nitrate reduction to am-

monium. The process has been previously observed at the

sediment–water interface of a seep system (de Beer et al.,

2006). Nitrate availability in the seawater medium was lim-

ited (∼ 4 µmol L−1). Nevertheless, sulfide-oxidizing bacteria

such as Beggiatoa or Thioploca can accumulate nitrate in

their vacuoles (Fossing et al., 1995; Preisler et al., 2007).

Furthermore, sediment cores recovered from the field were

covered by sulfide-oxidizing bacterial mats. Since oxygen

concentration in the bottom water was extremely low in this

OMZ (< 22 µmol L−1; Wyrtki, 1962; Levin, 2003), nitrate ap-

pears to be the most attractive electron acceptor for these sul-

fide oxidizers.

In summary, the observed increase in sulfide concentra-

tions was most likely attributed to sulfate reduction activity,

according to the development of the SBTZ. A loss of sulfide

was caused by porewater flushing through advection, which

was most pronounced in the HFC. Sulfide loss via oxida-

tion with nitrate (top of the sediment) and sulfide precipi-

tation (below 2 cm sediment depth) occurred more likely in

the LFC.

4.2 Microbial turnover rates and efficiency of the

benthic methane filter

Table 5 provides an overview of parameters (fluid flow,

methane emission, methane flux, AOM rate) from differ-

ent methane seep locations. Integrated areal AOM rates

(45.15± 11.48 mmol m−2 d−1) of ex situ radiotracer mea-

surements from the present study were in the upper range

of previous modeled data (1.5–42.1 mmol m−2 d−1; Karaca

et al., 2012) and moderate to high compared to other seep

systems (Treude et al., 2003; Joye et al., 2004; Niemann

et al., 2006; Knittel and Boetius, 2009; Krause et al.,

2014). In the SLOT experiments, the calculated methane

flux (0.3–2.8 mmol m−2 d−1) was lower compared to mod-

eled flux (9.1–41.7 mmol m−2 d−1) of the replicate core and

at the lower limit of the previously modeled data (0.2–

56.1 mmol m−2 d−1; Karaca et al., 2012). However, fluxes

of the SLOT experiment were still in the range of data pub-

lished for seeps in this region (Mau et al., 2006; Karaca et

al., 2010). In agreement with the relatively low methane flux

during the SLOT experiment, AOM rates (determined from

the difference in methane concentration between in and out-

flow) were 1 to 2 orders of magnitude lower compared to

ex situ determinations. AOM rates determined with radio-

tracer measurements after experiment termination revealed

peaks within the SBTZ (proxy for the SMTZ) of the HFC

(4–10 cmbsf). A broader distribution of AOM was found in

the LFC, while similar integrated rates suggest the same po-

tential for AOM. This agreement of integrated AOM rates

despite differences in fluid flux illustrates a widening of the

AOM zone with lower fluid fluxes, while a narrow AOM

zone at high fluxes appears to be compensated by higher

methane turnover. This effect was also reflected in a more

distinct peak of sulfide (see above) and confirmed by simula-

tions in the numerical model, specifically at the two model

runs from SO206-31 (MUC) (Figs. 1 and 2). However, it

should be kept in mind that methane concentrations during

the experiment were much lower than under in situ pressure

and it is therefore difficult to predict the upper limit of the

balance between fluid flux and AOM activity.

While in a previous study the methane consumption effi-

ciency of the benthic filter was estimated to range between

23 and 96 % of the dissolved methane flux (Karaca et al.,

2012), the efficiency in our study was between 92 and 100 %

in the modeled ex situ data and 99 % for the SLOT setup.

The latter value is based on the assumption that steady-state

conditions were reached in the SLOT cores directly before

fluid flow change, which was most likely reached in the HFC

but not in the LFC (see discussion above). A reason for the

partial disagreement in efficiency of the benthic filter com-

pared to the earlier studies could be the natural variability

in methane fluxes in this highly heterogeneous area. While

Karaca et al. (2012) based their results on a large number

of sediment cores (20 cores from the same seep site), only

two randomly chosen sites were sampled in our study, and
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only one was used for the experiment. Another explana-

tion could be temporal variability in fluid and methane flux.

Karaca et al. (2012) conducted their study 10 years prior to

ours. Methane flux as well as microbial activity could have

changed easily over this period (Mau et al., 2007; Füri et al.,

2010). A drop in methane flux would probably enhance the

efficiency of the benthic methane filter. For example, in the

present experiment, methane fluxes were 2 to 33 times lower

compared to the model of Karaca et al. (2012) since the sys-

tem was not pressurized and hence the solubility of methane

was limited. Lower methane fluxes resulted in a high effi-

ciency of the benthic microbial methane filter, despite rela-

tively high fluid advection.

Radiotracer determination of microbial turnover rates af-

ter the experiment revealed sulfate reduction activity at lev-

els higher than AOM, which was probably partly coupled

to organic matter degradation. Since the cores were ob-

tained within an oxygen minimum zone, sulfate reduction is

supposedly the most important pathway for organic matter

degradation (Jørgensen, 1977; Sørensen et al., 1979; Bohlen

et al., 2011). High C / N ratios in cores of the terminated ex-

periment compared to ex situ cores (Fig. 8 and 9) support

this assumption, because advanced microbial degradation of

fresh organic matter with high nitrogen content leads to a

shift from low to high C / N ratios (Whiticar, 2002). We as-

sume that at most 80 % of the sulfate reduction in the ex situ

analyses of SO206-St31 (MUC) can be related to organic

matter degradation (AOM : SR= 0.21). Most likely, this ra-

tio was less, because ex situ radiotracer incubations were

conducted under atmospheric pressure and less methane was

available compared to the in situ conditions. However, be-

cause organoclastic sulfate reduction occurred ex situ at the

sediment–water interface (0–2 cmbsf, Figs. 1 and 2), where

the consumed sulfate is replenished relatively rapidly by dif-

fusion and mixing from the seawater, this surface activity has

probably only little effect on sulfate gradients deeper in the

sediment (Jørgensen et al., 2001; Karaca et al., 2012).

In summary, the benthic microbial methane filter at Que-

pos Slide was found to be very efficient under continuous

flow. Only increases in fluid and methane flux, such as that at

the beginning of the experiment or the more pronounced one

after the fluid flow change, led to a drop in efficiency. Once

a new steady-state situation establishes, higher fluxes are ex-

pected to be compensated for by a more intensive AOM zone

(see above).

4.3 Response time of the microbial benthic methane

filter

In the outflow of the LFC, methane concentrations in-

creased only little and decreased after 202 d (directly be-

fore fluid flow change) to the initial concentration. In con-

trast, methane concentrations in the outflow of the HFC were

high (7.5 µmol L−1) at the beginning (29 d) and decreased

quasi-exponentially to concentrations of ∼ 2 µmol L−1 af-

ter 171 d. In the same time interval, the fraction of the

methane-containing “seepage” medium at the sediment–

water interface, calculated from the tracer (bromide) con-

centrations, changed from 13 to 34 % (Fig. 4a, j). From

the delivered methane (125.5 and 376.4 µmol L−1), 30 and

98 % were oxidized after 29 and 171 d, respectively, in the

HFC. This period (0–171 d) can be interpreted as the re-

sponse time of the benthic microbial methane filter in the

sediments of Quepos Slide. After the change in the flow

regime, the efflux of methane suddenly reduced to only

22 % (0.009 mmol m−2 d−1) in the former HFC (i.e., NLFC),

while the efflux in the former LFC (i.e., NHFC) increased

rapidly 15-fold (0.169 mmol m−2 d−1) after changing the

fluid flow. Based on bromide concentrations, the fraction of

seepage medium in the outflow of the NHFC was 4 %, which

should theoretically equal 38.5 µmol L−1 methane in the out-

flow if no methane were consumed. Compared to methane

concentrations directly measured in the outflow, only∼ 70 %

of the inflow methane was oxidized and 30 % was emitted.

These results illustrate how sudden events could result in

an abrupt increase in methane efflux. Mau et al. (2006) at-

tributed fluctuations in methane concentrations in the water

column, which occurred between autumn 2002 and 2003 at

the Costa Rican seeps, to an earthquake in June 2002. How-

ever, it was not specified whether the increased methane flux

resulted from increased fluid flow or simply bubble release;

neither was specified whether it was a continuous increase in

methane flux or just a transient effect.

The experiments of the present study clearly show that the

benthic microbial methane filter is able to respond within

a relatively brief time of 5–6 months to increased methane

fluxes and leads to the development of a much shallower and

thinner AOM zone. Even if methane fluxes and methane con-

centrations were 4 times higher in situ, as expected from

modeled methane fluxes of this study, the benthic micro-

bial methane filter may still be able to respond quickly if a

methanotrophic community is already fully established. Out-

side of seep habitats, where the microbial benthic methane

filter is either absent or in deeper sediment zones, the adapta-

tion might require much more time, since the doubling rate of

the microbes involved is on the order of a few months (Gir-

guis et al., 2005; Nauhaus et al., 2007; Krüger et al., 2008;

Meulepas et al., 2009). Mau et al. (2007) observed a reduc-

tion in methane emissions in the water column above the

earthquake-impacted seepage area by 50–90 % in a period

of 1 year. In our experiments, the benthic microbial methane

filter required only ∼ 170 d to adapt to the new flow regime.

It is not clear whether the subsequent reduction in methane

emissions observed by Mau et al. (2007) was the result of an

ephemeral pulse of methane flux or the adaption of the mi-

crobial benthic methane filter. Our results indicate that both

situations are conceivable.

Another scenario, in which the benthic methane filter

would be challenged, is the destabilization of gas hydrates

as a result of climate change (Buffett and Archer, 2004).
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However, due to retarded heat flux into deeper sediment lay-

ers, dissociation of considerable gas hydrate volumes prob-

ably require hundreds to thousands of years (Biastoch et al.,

2011). In the present study, we demonstrate that an estab-

lished microbial benthic methane filter can compensate for

relatively abrupt increases in methane flux. Only “pristine”

sediments which are virtually devoid of methanotrophs are

expected to show long adaptation periods of up to several

years or even decades (Dale et al., 2008) due to slow growth

rates of the anaerobes (Girguis et al., 2005; Nauhaus et al.,

2007; Goffredi et al., 2008).

5 Conclusions

Surface sediments of the Quepos Slide, a cold seep on

the Pacific coastline of Costa Rica located within the east-

ern tropical North Pacific oxygen minimum zone, feature

a very efficient benthic methane filter, demonstrated by di-

rect measurements of methane turnover rates ex situ and nu-

merical reaction modeling. In vitro experiments with intact

sediment cores using a sediment-flow-through system fur-

ther allowed for following the adaptation of the SMTZ to

changes in fluid flow, which revealed that the SMTZ nar-

rows to a thin layer under high fluid flow conditions. Methane

(ca. 1 mmol L−1 at atmospheric pressure) transported under

high fluid flow was efficiently consumed (99 % oxidation) by

the benthic methane filter after a response period of ca. 170 d.

These results illustrate how an established benthic methan-

otrophic microbial community could react to pulses in fluid

and methane flow induced, for example, by earthquakes or

gas hydrate dissociation, and how it regains its efficiency

level after passing through a non-steady-state period. As we

present here only one example of a response to a sudden fluid

flow pulse, further studies from other seep systems are advis-

able to validate our results.
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