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ABSTRACT: 

 

In the coastal Atacama Desert in Northern Chile plant growth is constrained to so-called ‘fog oases’ dominated by monospecific 

stands of the genus Tillandsia. Adapted to the hyperarid environmental conditions, these plants specialize on the foliar uptake of fog 

as main water and nutrient source. It is this characteristic that leads to distinctive macro- and micro-scale distribution patterns, 

reflecting complex geo-ecological gradients, mainly affected by the spatiotemporal occurrence of coastal fog respectively the South 

Pacific Stratocumulus clouds reaching inlands. The current work employs remote sensing, machine learning and spatial pattern/GIS 

analysis techniques to acquire detailed information on the presence and state of Tillandsia spp. in the Tarapacá region as a base to 

better understand the bioclimatic and topographic constraints determining the distribution patterns of Tillandsia spp. Spatial and 

spectral predictors extracted from WorldView-3 satellite data are used to map present Tillandsia vegetation in the Tarapaca region. 

Regression models on Vegetation Cover Fraction (VCF) are generated combining satellite-based as well as topographic variables 

and using aggregated high spatial resolution information on vegetation cover derived from UAV flight campaigns as a reference. The 

results are a first step towards mapping and modelling the topographic as well as bioclimatic factors explaining the spatial 

distribution patterns of Tillandsia fog oases in the Atacama, Chile. 
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1. INTRODUCTION 

The hyperarid coastal zone of northern Chile is home to unique 

ecosystems which depend on coastal fog as main source of 

water. Being the remnants of a continuous vegetation belt 

during the Pliocene, they nowadays occur in disjoint patches, 

so-called fog oases. 

 

The plant organisms existing under these environmental 

conditions have developed highly specialized adaptation 

strategies concerning the availability of water. One of the most 

characteristic vegetation units from Arica (18°20’ S) to the Loa 

river (21°25’ S) are Tillandsia spp. (Rundel et al., 1997). 

Tillandsia spp. grow without functional roots and are the 

ecological dominants over extensive areas of specialized 

communities called “Tillandsiales” or “Tillandsia lomas” 

(Westbeld et al., 2009). As Tillandsia spp. depend on fog as 

primary water and nutrient source, their spatial distribution is 

constrained to areas covered by coastal fog of sufficient 

frequency, duration and intensity (Hesse 2012).  

 

The fog water is supplied by regional-scale stratocumulus 

clouds that develop at the eastern tropical and subtropical 

southern Pacific Ocean as a result of high evaporation rates in 

the Pacific Ocean and quasi-permanent regional thermal 

inversion. At the South American coast, the stratocumulus 

clouds become an advection fog responsible for the existence of 

the coastal ecosystems. Because of their influence on the 

regional and local climate, their ecological effect on coastal 

plant communities and their potential as a water resource (fog 

collection/harvesting), these cloud banks, locally known as 

“camanchaca”, have become an important research focus during 

the last decades (Cereceda et al., 2002; Rutllant 2003; Pinto et 

al., 2006; Schulz et al., 2012). In this context, several authors 

constitute the particular sensitivity of Tillandsia spp. to 

changing environmental conditions at different spatial and time 

scales and highlight their potential value as bioindicator of 

climate change  

 

(Rundel et al., 1997; Latorre et al., 2011; Schulz et al., 2011). 

In fact, in the recent decades the Chilean fog ecosystems have 

shown increasing signs of decline, which might be linked to 

abrupt mesoscale climate shifts since the mid-1970s (Schulz et 

al., 2011). However, the magnitude of the decline and the 

underlying causal biosphere-atmosphere relationships are yet to 

be investigated to enable the implementation of more effective 

conservation strategies. Main gaps exist regarding the explicit 

linkages between the spatiotemporal variability of the fog 

clouds and associated fog ecosystems (Hesse 2012) as data 

requirements remain concerning the spatial distribution patterns 

of Tillandsia lomas and respective topographic/climatic 

controls. 

 

Previous studies presenting an area-wide inventory of 

Tillandsia spp. stands in the Atacama were based on visual 

interpretation of scanned black-and-white aerial photography in 

the scale of 1:70,000 (Pinto et al., 2006), which only provide a 

suboptimal basis for acquiring detailed information on the 
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presence, status and formation patterns of the Tillandsia spp. 

stands (Schulz 2009). In this context, the new generation of 

high spatial resolution (< 1 m) multispectral commercial earth 

observation satellites (e.g. QuickBird, IKONOS, WorldView-

2/3, Pleiades) has great potential to acquire more detailed and 

frequent information on their status and change. However, to 

date automated mapping routines allowing the reproducible, 

area-wide and cost-efficient generation of data on the presence, 

formation patterns and change of Tillandsia spp. is missing 

(Hesse 2012). 

 

At a local/stand level, Tillandsia spp. lomas are known to form 

distinct spatial patterns which provide indication on the local 

fog-water inputs and their relation to vegetation density and 

vitality (Borthagaray et al., 2010). Unmanned aerial vehicles 

(UAV) are an emerging technology which enables the 

acquisition of remote sensing imagery in the centimeter range. 

These images can be processed to detailed elevation models and 

orthoimage mosaics to deduce local location factors (e.g. 

orographic obstacles or fog-shadows, slope and aspect) 

explaining the presence, density and formations of Tillandsia 

spp. and providing a calibration or reference for upscaling to 

area-wide approaches based on optical satellite imagery. 

 

Against this background, the current work employs satellite- 

and UAV-based remote sensing, machine learning and 

knowledge-based image understanding as well as 

spatial/ecological modelling techniques to acquire detailed 

information on the presence and state of Tillandsia spp. in the 

study area (Tarapacá region) and to model its geo-ecological 

niche. 

 

2. STUDY AREA 

The study area is part of the Atacama Desert in the Tarapacá 

region, northern Chile. It extends for a 90 * 30 km coastal stripe 

at approx. 20° S (Figure 1). The area is characterized by 

hyperarid conditions which are a result of the effects of the 

stable high-pressure system of the western Pacific Ocean, the 

drying effect of the Humboldt current, and the rain shadow 

effect of the Andes impeding the penetration of moisture by the 

eastern trade winds.  

 

3. METHODS 

The general approach subdivides into the following four work 

steps: 

(1) UAV-based mapping of vegetation cover. 

(2) Delineation of Tillandsia fields using a two-step 

sequence of supervised spatiospectral classification 

and rule-based postprocessing. 

(3) Fractional Vegetation Cover (FVC): regression 

analysis using area-wide predictors based on 

WorldView-3 and the SRTM-30 model. 

(4) Analysing the topographic controls and bioclimatic 

envelope of Tillandsia spp. 

 

3.1 UAV-based generation of vegetation cover 

Unmanned Aerial Vehicles (UAVs) can be used to generate 

training, validation and testing data for statistical model 

generation based on area-wide satellite-based spatial-spectral 

predictors and further environmental or topographic variables. 

Compared to point- or plot-based information obtained by 

ground trothing in the field, UAV-based reference data 

collection can provide advantages in terms of data quantity,  

 
Figure 1. Study area in the coastal Atacama Desert, Chile. The 

hills (“Cerro”) serve as landmarks for orientation and demarcate 

locations where nearby Tillandsia fields have been reported in 

the literature (Pinto et al., 2006). 

 

 

spatial coverage and representativeness. Moreover, it allows the 

consideration of otherwise rather inaccessible regions and can 

advantageous in terms of operational costs. 

 

Three local focus sites (cp. Figure 1) within the study area have 

been chosen for the acquisition of subdecimeter information on 

vegetation cover to be used later as training and testing data for 

coarser but area-wide calculation of FVC. The choice of the 

local focus areas was guided by the intention to represent 

different vegetation densities and patterns formations. 

Tillandsia spp. are known to form banded patterns as a result of 

self-organizing processes to maximize fog water deposition 

Depending on the topographic conditions or population fitness, 

they also form reticulate or clustered patterns (Hesse 2012).    

  

During several flight campaigns in 2014 and 2015, 

approximately 3000 to 4000 RGB-images have been captured 

per site using a consumer digital SLR camera mounted on the 

parachute-UAV “SUSI-62” (Thamm 2011). The images have 

been processed using a Structure-from-Motion approach 

(Mancini et al., 2013) as implemented in the Photoscan Pro 

software to generate 3 cm RGB orthomosaics and 6 cm digital 

surface models (Figure 2). 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B2, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.  
doi:10.5194/isprsarchives-XLI-B2-251-2016

 
252



 

 
Figure 2. Subset of the digital surface model of the “Oryabide” 

local focus site with draped 3 cm-resolution orthomosaics. 

 

For the extraction of Tillandsia vegetation cover, a Geographic 

Object-based Image Analysis Approach (GEOBIA)  has been 

developed, resulting in maps with high agreement comparing to 

the reference of manual photointerpretation (Kappa Index of 

Agreement κ = 0.99; n = 400; simple random sampling, focus 

site “Oryabide”). Minor discrepancies may occur in areas with 

very sparse or isolated, often diminishing vegetation patches. 

 

 
Figure 3. Example of the vegetation cover information extracted 

using knowledge-based image analysis. 

 

 

3.2 Delineation of Tillandsia fields 

This processing step has been implemented to obtain a coarse 

delineation of Tillandsia fields within the study area, with the 

aim to constrain the subsequent calculation of VCF to a 

minimal candidate region. This allows the induction of more 

specific, accurate prediction models and impedes false 

positives. 

 

Due to spare vegetation coverage and limited photosynthetic 

activity, neither spectral vegetation indices nor complex models 

induced in multispectral feature spaces allow an accurate 

discrimination of Tillandsia vegetation. Instead, we suggest the 

use of multiscale spatial features to complement the spectral 

feature space. A set of 280 spatial and spectral features has been 

derived from 8-band multispectral and panchromatic 

WorldView-3 surface reflectance data using multiscale image 

segmentation and object-based feature extraction. The feature 

set includes per-object spectral and vegetation indices means, 

standard deviations, minimum pixel values, contextual, textural 

and shape information, extracted from stepwise incremented 

segmentation scales. For more detailed information the reader is 

referred to (Benz et al., 2004; Wolf 2013; Trimble 2014). 

 

Using Recursive Feature Elimination based on the Random 

Forest algorithm (Breiman 2001; Kuhn 2016), the extensive 

feature set has been incrementally reduced discarding the 

weakest features with the aim to reduce the data volume and 

computational cost. Graphing the number of variables against 

cross-validated Kappa values (Figure 4) defined the optimal 

feature subset with a dimensionality of 17. 

 

 
Figure 4. Plotting model performance against incrementally 

reduced data dimensionality to determine optimal feature 

subsets. 

 

Training regions representing Tillandsia vegetation have been 

manually selected from the pansharpened WorldView-3 image. 

Using three repeats of 10-fold cross-validation, prediction 

models implemented in the caret-package (Kuhn 2016) of the 

R Statistical Computing framework have been trained and tuned 

on the basis of the feature subset (Table 1). The best performing 

model was selected based on Kappa Index of Agreement κ 

(Cohen 1960). 

 

Model method Packages 
Tuning 

Parameters 

CART rpart rpart cp 

Bagged CART treebag 

ipred, 

plyr, 

e1071 
None 

SVM rbf svmRadial kernlab sigma, C 

Random 

Forest 
rf 

randomFor

est 
mtry 

Stoch. Grad. 

Boosting 
gbm gbm, plyr 

n.trees, 

interact..depth, 

shrink., n.minobs. 

Partial Least 

Squares 
kernelpls pls ncomp 

Naive Bayes nb klaR 
fL, usekernel, 

adjust 

k-Nearest 

Neighbors 
knn 

 
k 

Table 1. Models available via the caret package. 

  

 

Simple postprocessing filters and decision rules have been 

implemented in eCognition software to generalize the 

vegetation mask to contiguous Tillandsia field polygons. 
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3.3 Upscaling vegetation cover to Vegetation Cover 

Fraction (VCF) 

Vegetation cover as derived from UAV-imagery (cp. Section 

3.1) was aggregated to a 30 m x 30 m grid, defining the 

response of VCF for fitting a regression model based on 

Random Forests, leaving the default parameters of the R 

randomForest-package implementation (Liaw 2015). 

Equally aggregated to the analysis grid, a set of predictors has 

been derived from WorldView-3 and SRTM-30 (Table 1). An 

appropriate co-registration of UAV-based response variable 

(vegetation cover) and predictor variables has been achieved by 

automated tie-point generation and locally optimized correction 

of the UAV orthoimages.  

   

Variable Alias 

Mean MS band 1 Mean.B1 

Mean MS band 2 Mean.B2 

Mean MS band 3 Mean.B3 

Mean MS band 4 Mean.B4 

Mean MS band 5 Mean.B5 

Mean MS band 6 Mean.B6 

Mean MS band 7 Mean.B7 

Mean MS band 8 Mean.B8 

Mean NDVI "(B7-B5)/(B7+B5)" NDVI 

MEAN NDRI "(B6-B5)/(B6+B5)" NDRI 

Mean variance filter PAN (kernel size = 5) Mean.SD5 

Mean variance filter PAN (kernel size = 15) Mean.SD15 

SRTM-30 Slope Mean.SLOPE 

SRTM-30 Aspect Mean.ASPECT 

Table 2. Predictor variables for the area-wide estimation of 

Vegetation Cover Fraction (VCF). 

 

 

4. RESULTS 

Figure 5 shows the optimized feature subset with 17 out of 280 

dimensions with the according permutation-based variable 

importance scores. The prefixed denotes the segmentation scale. 

For example the prefix “X320” refers to a feature extracted 

from a segmentation level with scale 320 (Baatz, Schäpe, 

2000); “X0” refers to the pixel level. The best performing 

model (cp. Table 1) was induced using the Random Forest 

algorithm, with κ = 0.975 (non-random / biased sampling). 

 
Figure 5. Permutation-based variable importance of Random 

Forest model (scaled to the range 0 to 100). 

 

VCF could be derived using Random Forest regression (no. of 

trees = 1000, mtry = 4) with a mean of squared residuals of 

0.000198 indicates the contribution of individual input 

variables, showing the particular importance of the spatial 

variance filter (kernel size 15 px) using the panchromatic 

WorldView-3 band (Figure 6).  

 

Topographic constraints can be described at a 30 m x 30 m 

analysis grid using the delineated Tillandsia fields and SRTM-

30-based elevation, slope and aspect. Moreover, the distance of 

Tillandsia fields to the coastline has been calculated. The 

Tillandsia fields distribute in a range between 810 m and 1280 

m a.s.l. which differs from a 930 m to 1050 m range reported in 

the literature (Rundel et al., 1997). The calculated average 

slope, facing predominantly southwest, is 8°.   

 

 
Figure 6. Contribution of individual variables to the Vegetation 

Cover Fraction (VCF) model. 
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Figure 7. Topographic constraints of Tillandsia spp. 

 

 

5. SUMMARY AND OUTLOOK 

This contribution has demonstrated the application of remote 

sensing, machine learning and spatial pattern/GIS analysis 

techniques to acquire detailed information on the spatial 

distribution of Tillandsia spp. in the Tarapacá region as a base 

to better understand its bioclimatic and topographic envelope. 

Spatial and spectral predictors extracted from WorldView-3 

satellite data have been used to map present Tillandsia 

vegetation in the study area. Regression models on Vegetation 

Cover Fraction (VCF) have been generated using satellite-based 

and topographic variables while using aggregated high spatial 

resolution information on vegetation cover derived from UAV 

flight campaigns as a reference for model training. The results 

provided a first step towards mapping and modelling the 

topographic as well as bioclimatic factors determining the 

spatial distribution patterns of the threatened and endemic 

Tillandsia fog oases in the Atacama, Chile. 
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