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ABSTRACT: 

 

In this study, we first develop a hypothesis that existing quantitative visual complexity measures will overall reflect the level of 

cartographic generalization, and test this hypothesis. Specifically, to test our hypothesis, we first selected common geovisualization 

types (i.e., cartographic maps, hybrid maps, satellite images and shaded relief maps) and retrieved examples as provided by Google 

Maps, OpenStreetMap and SchweizMobil by swisstopo. Selected geovisualizations vary in cartographic design choices, scene 

contents and different levels of generalization. Following this, we applied one of Rosenholtz et al.’s (2007) visual clutter algorithms 

to obtain quantitative visual complexity scores for screenshots of the selected maps. We hypothesized that visual complexity should 

be constant across generalization levels, however, the algorithm suggested that the complexity of small-scale displays (less detailed) 

is higher than those of large-scale (high detail). We also observed vast differences in visual complexity among maps providers, 

which we attribute to their varying approaches towards the cartographic design and generalization process. Our efforts will 

contribute towards creating recommendations as to how the visual complexity algorithms could be optimized for cartographic 

products, and eventually be utilized as a part of the cartographic design process to assess the visual complexity. 

 

 

                                                                 

*  Corresponding author 

 

1. INTRODUCTION 

Several algorithmic approaches have been proposed in 

interdisciplinary scientific literature to measure the complexity 

levels of visual displays (Batty et al., 2014; MacEachren, 1982; 

Moacdieh & Sarter, 2015; Rosenholtz et al., 2007). When 

applied to maps, the question arises whether these algorithmic 

measures match the semantically enhanced cartographic 

generalization approaches, given that ‘simplification’ operations 

to reduce complexity dominate the generalization processes. In 

this project, to assess and validate quantitative approaches to 

measuring visual complexity in a cartographic context, we 

compare results from a selected set of visual complexity 

algorithms. In this paper, we present results from one of these 

visual complexity algorithms, which we applied to various map 

types (i.e., 2D cartographic maps, hybrid maps, aerial/satellite 

images, shaded relief maps). For the 2D cartographic map types, 

we extended the selection and applied the algorithm for a set of 

maps with various levels of generalization. We believe such a 

comparison would be helpful in validating and improving the 

aforementioned algorithmic measures, and optimizing them for 

geographic visualizations, which, in turn, could be used as 

interim measures for cartographic design as the display size and 

the zoom levels change.  

 

Despite the great progress in automation efforts since the 

beginning of the computer cartography (Brassel & Weibel, 

1988), generalization process as a whole remains highly 

‘human’ (i.e., human decision-making is involved in many of 

the steps), offering geometric as well as semantic approaches in 

managing the visual complexity of (geo)visualizations. With 

generalization, cartographers and other visualization designers 

aim to summarize information without removing essential 

details, making the display more legible, and highlighting the 

most relevant information (e.g., Shea & McMaster, 1989). 

Therefore, generalization essentially reduces visual complexity 

through simplification operations in order to improve legibility, 

or visually designing the objects and their attributes for better 

discriminability (such as shape, color, mutual distance, see e.g., 

Brychtová & Çöltekin, A., 2014, 2016), so that the human eye 

can reasonably distinguish them. A further goal when working 

with complex visualizations related to level of detail 

management is to reduce computational processing time and 

bandwidth requirements, especially when dealing with large 

datasets, e.g., large map collections, imagery, 3D graphics (e.g., 

Çöltekin et al., 2011). Visual complexity algorithms can serve 

as supporting tools for generalization and level of detail 
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management, especially when we are concerned with perceptual 

issues by determining if a display is too complex (thus would 

require a (re)consideration of generalization and level of detail 

management for the given scale). However, most modern visual 

complexity measures are not tested, thus also not optimized, for 

geographic visualizations. To fill this gap, as a first step, we 

contrast the results from the generalization process to the results 

from the selected visual complexity measures; examine if and 

when the complexity measures reflect the generalization levels 

and study the reasons in cases where they do not. 

 

2. METHODS 

Because many visual complexity measures are based on psycho-

physiological literature on how attention works (i.e., they 

account for certain optical, perceptual and cognitive 

characteristics based on, broadly, vision science), we 

hypothesize that these complexity measures will overall reflect 

the levels of map generalization. At the same time, we believe, 

that measuring the visual complexity of geographic displays 

could help to evaluate the quality of generalization process. In a 

related study, Pászto et al. (2015) examined geometry 

generalization using shape metrics, which provide quantitative 

evaluation of the simplification degree of the shape (e.g., 

building footprints), demonstrating that shape metrics could 

help reveal discrepancies in the process of semi-automated 

generalization. 

 

In this study, similarly to Schnur et al. (2010), we selected 

examples of common geovisualization types and computed their 

Feature Congestion (FC), which is a metric proposed by 

Rosenholtz et al. 2007 to describe visual complexity. Feature 

Congestion was originally designed to describe the clutter of 

visual displays. It involves color, orientation and luminance 

contrast as three features of the visual clutter while considering 

their local and global covariance in multiple scales (for more 

details, see Rosenholtz et al. 2007). We believe that Feature 

Congestion can be applied in cartography to assess either the 

quality of symbolization (e.g., if a lot of contrasting black is 

used, such as in swisstopo maps, FC scores will be high), and 

amount of visualized information, which is closely related to 

generalization.   

 

Our study was conducted in two phases. At first, we aimed at 

analyzing the effect of the scale on the visual complexity. 

According to Ruas (2008) for a given size of map sheet, nearly 

the same quantity of information should be given for different 

scales. Thus we hypothesized that the visual complexity of 

consecutive generalization levels should remain equal. In the 

second phase, we analyzed how the visual complexity is 

influenced by the content (information density) of 

geovisualizations. We expected that visual complexity will be 

positively correlated with the amount of mapped features. 

 

We selected example displays to analyze from the widely 

accessible geovisualizations provided by Google Maps (Map 

data ©2016 Google & various imagery providers), 

OpenStreetMap (Map data ©2016 OpenStreetMap contributors) 

and SchweizMobil (Geodaten ©2016 swisstopo). 

 

Phase 1: First, we analyzed 5 sets of geovisualizations of 

various types as shown in Figure 1: OpenStreetMap (OSM)’s 

cartographic map, and four types from Google Maps: ‘roadmap’ 

(the standard 2D cartographic map), terrain, hybrid and satellite 

visualizations.  For each type we distinguished 6 zoom levels 

(corresponding to Google Maps zoom levels 8, 9, 10, 12, 14 

and 16) each with 12 samples (Figure 1). Therefore, in total we 

worked with 360 maps (5 types × 6 zoom levels ×12 samples). 

All samples were of the same size (1600×1600 px) and their 

centers were placed to 12 predefined (but arbitrary) coordinates 

within Europe. The scene content was not particularly 

controlled in this phase, however all scenes displayed a rural 

landscape without any dominant features such as big cities. 

 

 

Figure 1. Analyzed geovisualization types in the Phase 1. 

 

 

Phase 2: We selected two sets of ‘triplet’ city maps from each 

map provider. The screenshots are ‘triplets’ because they are 

identical in area (e.g., part of the Zurich city, as shown in Figure 

2), and scale (corresponding to Google Maps zoom level 14). 

First set showed the city center and the second set an arbitrarily 

selected suburban area. As stated earlier, the maps were taken as 

screenshots from Google Maps, OpensStreetMap and 
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SchweizMobil (Figure 2). In this phase, the scene (map) content 

was balanced to show areas of higher and lower urban 

development (city center and suburban area). 

 

 

Figure 2. Analyzed city maps in the Phase 2. 

 

 

3. RESULTS 

Figure 3 shows the Feature Congestion (FC) scores for the 

studied geovisualization types (as shown in Figure 1).in the 

Phase 1. The highest mean visual complexity Mdn=4.85 

(measured with FC) was found for a set of OpenStreetMap 

displays while the lowest was (counterintuitively) for Google 

Maps’ satellite displays (Mdn=2.11). On the other hand, as 

expected, the visual complexity of satellite displays were also 

the least sensitive on the zoom level and mapped content 

(sd=0.37) in comparison to the other visualization types whose 

standard deviation (sd) is much higher (sdOSM=1.93, 

sdroadmaps= 1.83, sdterrain= 1.83, sdhybrid= 1.26).  

 

Figure 3. Mean Feature Congestion of examined types of 

geovisualizations. Error bars correspond to M ± 2×SE. 

 

The smaller the scale of the map, the less detail should be 

displayed per square kilometer. Conversely, the larger the scale, 

the more detailed is the area mapped for the same map size 

(Ruas, 2008). However, as can be seen in Figure 4, by studying 

the Feature Congestion of individual zoom levels, we found that 

all geovisualizations types, except satellite images, manifest 

increase of visual complexity as the level of map detail 

decreases. The generalization process is typically executed from 

high detailed data by removing/suppressing some information in 

less detailed displays of larger areas. Thus, the relative visual 

complexity should be ideally constant across all zoom levels. 

However, our results, as presented in the Figure 3, show that 

less detailed displays of smaller scale (e.g., zoom level 8) 

contains  more feature congestion (‘more information’), than 

highly detailed displays of large scale (e.g., zoom level 16), 

contradicting our expectations. On the other hand, these results, 

especially given that the results for the satellite images remain 

more or less constant over scale changes, suggests that the 

algorithm is working as it should in this case.   

 

 

Figure 4. Mean Feature Congestion of geovisualizations types 

across examined zoom levels. 

 

In the Phase 2, to track the effect of map content (area) on 

visual complexity we studied six maps displaying two areas of 

the same scale (see Figure 3). The visual complexity of different 

map providers considerably varied (see Table 1). The highest 

FC was for SchweizMobil maps in both areas, while the lowest 

was for Google roadmaps. Differences between individual 

providers can be assigned both to the applied cartographic 

symbology (visual variables), and to the amount of displayed 

symbols. In this point, we are not able to say what level of FC 

related to the amount of visualized information is optimal, and 

it remains for future investigation with a larger sample set. In all 

three cases studied in Phase 2, the visual complexity was lower 

for suburban areas maps, which is caused by the naturally lower 

amount of spatial information in these areas – validating the 

algorithm’s ability to pick up on the level of detail. Since all 

maps display the same area (represents the same reality, thus 

they contain the same amount of input information to be 

generalized) with the same cartographic symbology, the 

differences should be the same regardless the map provider.  

However, the biggest difference between the two areas was 

observed for OpenStreetMap (ΔFC=3.77) and the lowest for 

Google Maps roadmap (ΔFC=1.79). This can only be explained 

by different approaches of the cartographers (or the 

generalization algorithms) when selecting information to be 

displayed. It could either mean that in OSM the amount of 

information displayed in suburban areas are less dense 

compared to city center (which is plausible), or that Google 
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Maps exaggerates suburban area information. Again, without 

having more knowledge about optimal FC, we could only 

scarcely explain this result.  

 

map Feature Congestion 

 city centre suburban area difference 

GM roadmap   5.25   3.46 1.79 

OSM   8.76   4.99 3.77 

SchweizMobil 13.36 10.87 2.48 

Table 1. Visual complexity measured with Feature Congestion 

for maps of the city center and suburban area from various 

providers. 

4. CONCLUSSION AND FUTURE PLANS 

The larger aim of our project is to test a hypothesis that visual 

complexity measures will overall reflect the level of 

cartographic generalization. In this paper, we specifically 

hypothesized that visual complexity should be constant across 

generalization levels; however we found that the complexity of 

large scale (low detail) displays was higher than those of small 

scale (high detail) ones as expressed with the FC metric. We 

also observed vast differences of visual complexity among 

various maps providers, which we attribute to their different 

approach towards the cartographic design and generalization 

process. Previously it was found that perceived visual 

complexity might be correlated to algorithmically measured 

complexity (Schnur et al. 2010). Even though people can assess 

and report the level of visual complexity quite good by mere 

intuition, the Feature Congestion metric can be helpful to 

automatically reveal poor results of generalization or 

cartographic design over large sample of data. We will continue 

to test our hypotheses with other existing visual complexity 

computations (e.g., Ciolkosz-Styk & Styk, 2013; Harrie & 

Stigmar, 2009, Krejtz et al., 2014) and assess their suitability 

for various geographical displays, and thus we will contribute to 

the understanding of their usefulness in a geographic context. 

We also wish to gain more knowledge about relation between 

visual complexity and usability of geographical displays, thus 

we plan to perform series of user studies.  
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