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ABSTRACT: 

 

With the increasing acceleration of urbanization, the degeneration of the environment and the Urban Heat Island (UHI) has attracted 

more and more attention. Quantitative delineation of UHI has become crucial for a better understanding of the interregional 

interaction between urbanization processes and the urban environment system. First of all, our study used medium resolution 

Chinese satellite data-HJ-1B as the Earth Observation data source to derive parameters, including the percentage of Impervious 

Surface Areas, Land Surface Temperature, Land Surface Albedo, Normalized Differential Vegetation Index, and object edge detector 

indicators (Mean of Inner Border, Mean of Outer border) in the city of Guangzhou, China. Secondly, in order to establish a model to 

delineate the local climate zones of UHI, we used the Principal Component Analysis to explore the correlations between all these 

parameters, and estimate their contributions to the principal components of UHI zones. Finally, depending on the results of the PCA, 

we chose the most suitable parameters to classify the urban climate zones based on a Self-Organization Map (SOM). The results 

show that all six parameters are closely correlated with each other and have a high percentage of cumulative (95%) in the first two 

principal components. Therefore, the SOM algorithm automatically categorized the city of Guangzhou into five classes of UHI zones 

using these six spectral, structural and climate parameters as inputs. UHI zones have distinguishable physical characteristics, and 

could potentially help to provide the basis and decision support for further sustainable urban planning. 

 

 

1. INTRODUCTION 

The rapid urbanization and rapid growth of large cities has been 

accompanied by localized temperature increases, known as 

Urban Heat Islands (Wake 2012). Studies on the ecosystem 

have shown that the effects of urban thermal climate change are 

aggravated by land-cover changes (Kalnay and Cai 2003; Ziska 

et al. 2003). Thermal Climate change thus in turn influences the 

cities and regions at a particular scale, increasing the risk of 

heat stress, extreme precipitation, etc. These reports 

acknowledge that an understanding of the urban thermal climate 

context is of prime importance for implementing effective urban 

adaptation strategies. Many studies have emerged discussing 

resilience to urban heat islands change in urban areas and what 

contributes to it (Karl, Diaz, and Kukla 1988; McGranahan, 

Balk, and Anderson 2007; Grimm et al. 2008). However, there 

was still no universal approach to describe the physical 

characteristics of urban heat island across multi-scale regions.  

Since the 1970s, Earth Observation data have been widely 

applied and recognized as a powerful and effective data source 

in detecting urban land use and land cover (Anderson 1976), 

urban heat islands (Lo, Quattrochi, and Luvall 1997; Streutker 

2002), impervious surface areas (RIDD 1995), and other 

climate factors (X.-L. Chen et al. 2006). These detailed urban 

survey products made it possible to study the urban climatology 

in a cheap and rapid way. Stewart and Oke (2012) proposed the 

concept of a Local Climate Zone (LCZ) to illustrate the Urban 

Heat Island (UHI), and emphasized that the portray of LCZ 

should be based on the expert knowledges of surface structure 

(e.g. building/tree height and spacing), metabolism (e.g. land 

surface temperature), fabric (e.g. land surface albedo) and land 

cover features (e.g. land use class, impervious surface). This 

framework is more conducive to analyse the LCZ differences 

than the traditional urban-rural climate difference. However, the 

physical properties of all zones listed in this framework cannot 

correspond well with all field sites, the delineation of local 

climate zones is constrained by the resolution of remote sensing 

data, and how to quantitatively describe the contribution of each 

climate factor into the delineation of the urban climate zones is 

still the question that needs to be explored.    

This study aims to use the medium resolution images (30 meter) 

to quantitatively define the UHI zones. We plan to describe the 

local climate zones of UHI by (1) using object-based image 

analysis to identify spatial patterns of Impervious Surface 

Areas, Land Surface Temperature, Land Surface Albedo, 

Normalized Difference Vegetation Index, and object-based 

spectral information; (2) quantifying the contribution of all the 

relevant factors to the delineation of UHI zones by 

unsupervised cluster method - Self-Organization Map; (3) 

formulating all factors to effectively map the UHI zones.  

 

2. STUDY AREA AND DATA COLLECTION 

Guangzhou (shown in Figure 1), with a total area of 7,434.4 

square kilometres, is located in southern China. As one of the 

fastest growing cities in China, Guangzhou has around 8.5 

million inhabitants and has become a typical industrial city. A 

high intensity of economic activities in this city is causing 

serious urban environmental problems, including suburban 

underlying surface anomalies and the tendency of rising average 

temperatures (Yang et al. 2013). 
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HJ-1B, which belongs to the disaster mitigation satellite 

constellation-Huanjing (Environment, HJ-1B) was used in this 

study. A HJ-1B image was acquired over the study area on the 

20th of August, 2011. The HJ-1B satellite contains 2 CCD 

Optical Cameras both with 4 bands (30 m Resolution) and a 

broad swath 1 Infrared Camera (300 m Resolution). 

 

 

Figure 1. The study area-Guangzhou, China 

 

3. METHODOLOGY 

3.1 Workflow 
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      Figure 2. Overall workflow. White box presents the data 

sources, grey boxes represent the climate parameters, blue box 

represents the aggregation method, and original box represents 

results. 

We proposed a framework (Figure 2), which was based on the 

medium resolution HJ-1B satellite data, to derive different local 

climate zones parameters (including the percentage of 

Impervious Surface Area (%ISA), Land Surface Temperature 

(LST), surface albedo, Normalized Difference Vegetation Index 

(NDVI), two spectral intensity features-Mean of Inner Border 

(MOIB) and Mean of Outer Border (MOOB)). Then we 

integrated these six parameters with the self-organization maps 

to classify the urban thermal climate phenomenon into different 

local climate zones.  

 

3.2 Estimation of the parameters for LCZ of UHI 

3.2.1 The percentage of impervious Surface Area: The 

percentage of impervious surface area is a parameter that 

reflects a concomitant environmental change in urban cover 

composition (Yuan and Bauer 2007). It can objectively model 

the impact of human activities on energy and moisture flux, and 

is thus suitable to monitor the environmental impact related to 

urbanization and examine the local climate zones of UHI from 

the urban morphology aspect.  

Wu and Murray (2003) found that impervious surfaces are 

likely on or near the line connecting the low albedo and high 

albedo endmembers in the feature spaces, and those most 

impervious surfaces might be represented by the Linear Spectral 

Mixture Analysis (LSMA). Therefore, the LSMA model was 

used to extract the percentage of ISA information in this study. 

We firstly used the Maximum Noise Fraction (MNF), which is 

implemented in the software ENVI, to build a statistical model 

for the images and transform the noise covariance matrix of the 

dataset to an identity matrix. The MNF components suggested 

that the spectral reflectance of the HJ-1B image might be best 

represented by a three end-member linear mixing model. These 

end-members are high albedo (e.g. concrete, clouds, and sand), 

low albedo (e.g. asphalt road, built-up area), and vegetation 

(e.g. farmland, grass and trees). Then, based on the end-member 

extraction function PPI in ENVI, three types of end-members 

were identified according to their feature spaces and associated 

interpretations. Finally, the combination of the three end-

members represented the percentage of impervious surface 

areas. More details of the processing can be found in Wu and 

Murray (2003). 

 

3.2.2 Land Surface Temperature: Studies on the urban heat 

island phenomenon using satellite derived land surface 

temperature (LST) were conducted using AVHRR data, Modies 

data, Landsat  data and so on (Weng, Lu, and Schubring 2004). 

The LST, which shows the partitioning of sensible and latent 

heat fluxes, is believed to correspond closely with the urban 

climatology. We thus chose it as a parameter to delineate the 

local climate zones. 

Jiménez-Munoz & Sobrino’s discovered a linear relationship 

between radiance and temperature, and set up a first order 

Taylor’s approximation formula (Jiménez-Muñoz and Sobrino 

2003). Based on JM&S model, in order to get the Ts, the land 

surface emissivity (ε) and the water vapour content (w) are the 

two main values that need to be calculated. In this study, the 

land surface emissivity (ε), which indicates how effectively 

thermal energy is transmitted across the surface into the 

atmosphere, was obtained through the NDVI thresholds method 

(Qin et al. 2004). The atmospheric water vapour content (w) 

was obtained from the website of global atmospheric 

monitoring designed by the University of Wyoming 

(http://weather.uwyo.edu/upperair/sounding.html). More details 

of the processing can be found in Jiménez-Muñoz and Sobrino 

(2003). 
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3.2.3 Land Surface Albedo: Surface albedo was treated as 

an indicator which represents the ability of the surface to reflect 

the incoming direct and diffused irradiance at all wavelengths 

and towards all possible angles (Taha 1997). The physical 

characteristics of surface albedos are crucial to model surface 

energy balance processes. We therefore used surface albedo as 

an indicator to delineate the local climate zones of UHI. 

Remote Sensing images make the global mapping of land 

surface albedo possible. Liang (2001) established a general 

conversion formula by incorporating hundreds of measured 

reflectance spectra of different cover types, and simulated 

surface spectral albedo based on different spectral sensor 

response functions.  Because the HJ-1B imagery has the same 

narrowband as Landsat ETM+, we derived the surface albedo 

using the approach of Liang (2001) adjusted for HJ-1B (band 1-

band 3) in 30 m spatial resolution. 

 

3.2.4 Spectral information analysis: Spectral information 

extracted from satellite data has been an active research area for 

decades. In order to illustrate the urban climate zone 

characteristics, we used the NDVI to provide information about 

the spatial and temporal distribution of vegetation communities. 

The NDVI, which links the impact of human activities to 

vegetation, has demonstrated the possible key role in 

environmental changes analysis in an ecosystem context (Ichii, 

Kawabata, and Yamaguchi 2002; Pettorelli et al. 2005).  

Obtaining detailed objects boundary information is an important 

issue for the LCZ interpretation. Therefore, we used a series of  

spectral-shape-texture information as the input layer to carry out 

the image segmentation, and test their performance using 

the  local variance in ESP tool (Drăguţ et al. 2014), and finally 

selected two object-based edge detector indicators: Mean of 

Inner Border (MOIB) and Mean of Outer Border (MOOB), as 

the most appropriate features to describe the objects’ 

boundaries by using the mean layer intensity value of the 

pixel/voxels belonging to an image object (eCognition 

Developer 2014) . 

 

3.3 Delineation of LCZ of UHI based on Self-organisation 

Map 

The Object-Based Image Analysis (OBIA), which focuses on 

objects and allows combining characteristics of shape, texture, 

context and relationships with neighbours into the image 

analysis (Blaschke 2010), can provide object-based units carry 

out the LCZ delineation. We used the ESP2 tool to generate an 

optimised segmentation scale-50 for the HJ-1B image, and then 

used the multi-resolution segmentation to divide the original 

image into 75630 objects with the optimised scale of 50. Taking 

each object as a unit, we estimated the mean value of the 

percentage of ISA, LST, surface albedo, NDVI, MOIB and 

MOOB, in order to further describe the LCZ of UHI. 

Depending on the object-based urban climate factors introduced 

above, Self-Organization Maps (SOM), with the advantages of 

independence from external evaluation function, recognition of 

the most meaningful features within vector space, auto stability 

of network, etc (Kohonen 1990), was used to automatically 

categorise the urban climate zones into different classes in 

Guangzhou.  

In this study, we firstly used the principal component analysis 

(PCA) to evaluate the usability of all the parameters, and then 

combined the optimised parameters as the input for the SOM 

classification. As an unsupervised clustering method, the SOM 

method does not need to prepare the training samples, covering 

the limits of convergence and holistic optimisation problem in 

many other automatic learning algorithms, such as BP neural 

network, Support Vector Machine, etc (H. Chen, Schuffels, and 

Orwig 1996). We only need to design the size of the input 

vector and then use the input vector present the multilayer 

feedforward network. After many repetitions with many sets of 

vector pairs, a SOM learner will classify multilayer networks 

from the high dimensions groups into the low-dimensions 

clusters group. In our study, we chose the hexagonal polygon as 

the input vector and trained the size input vector from 10 to 50. 

More details regarding the SOM algorithm can be found in the 

tutorial of GWmodel in the software R. 

 

4. RESULTS  

4.1 The validation of all indicators 

The result of the % ISA is shown in Figure 3.a. The residual 

term RMS of every image pixel was calculated and used to 

assess the performance of this model (Wu and Murray 2003). 

The RMSE value of the LSMA algorithm for the HJ-1B image 

was 0.027, which is lower than the upper limit of model test 

standard 0.2. Then we conducted 200 random samples to 

evaluate the classification accuracy, the overall accuracy and the 

kappa of which are 92.1% and 78.6% separately. 

The result of the LST is shown in Figure 3.b. Due to the lack of 

ground truth data of land surface temperature, the JM&S 

algorithm was validated by comparing the results with MODIS 

LST products (MOD11_L2). There was a positive correlation 

(0.215) between the LST product of MODIS and that of HJ-1B.  

The validations of other four spectral indicators (surface albedo, 

NDVI, MOIB, MOOB) which were also lacking the ground 

truth data were conducted by estimating their correlations with 

ISA and LST. In this procedure, the LST result was downscaled 

from 300 metre resolution to 30 metre resolution. The result of 

bivariate correlation analysis is depicted in Table 1. Except for 

the parameter MOOB (Figure 3.f), which showed only a slight 

correlation with the other five parameters, there were strongly 

positive correlations within all the other parameters. In order to 

further test the performance of MOOB in the LCZ delineation, 

we finally decided to use all these six parameters as inputs to 

describe the UHI zones. 

 

 (a) %ISA                               (b)  LST           
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            (d) Surface Albedo                         (d)  NDVI         

 

       (e) Mean of Inner border         (f) Mean of Outer border        

Figure 3. The spectral parameters and climate parameter that 

were derived from HJ-1B image 

Table 1. The correlations matrix between all climate and 

spectral parameters (1 is ISA; 2 is LST, 3 is MOIB, 4 is 

MOOB,5 is NDVI, 6 is Surface albedo) 

 1   4 5 2 3 4 5 6 

1 1 -.579* -.810* .012* .925* -.824* 

2 -.579* 1 .569* -.028* -.647* .593* 

3 -.810* .569* 1 -.014* -.879* .980* 

4 .012* -.028* -.014* 1 .016* -.013* 

5 .925* -.647* -.879* .016* 1 -.888* 

6 -.824* .593* .980* -.013* -.88** 1 

*Correlation is significant at the 0.01 level (2-tailed). 

 

4.2 The contribution of all climate indicators for LCZ of 

UHI 

Table 2 shows the total variance of all components in the 

Principal Component Analysis (PCA). Table 3 shows the 

contribution of all the parameters to the first two components of 

the PCA. The cumulative of the top three principal components 

sum up to 94.346%, which demonstrates that they can represent 

well the main characteristics and the interrelationships of all the 

six relevant climate parameters. In the component matrix, the 

indicators of the NDVI made the most significant contribution 

to the first principal component, following by surface albedo, 

MOIB, and ISA. It means that the indicators concerning the 

vegetation distribution performed as the basic but the most 

important parameter in terms of delineating the LCZ. The 

contribution of the NDVI to LCZ in turn confirmed the 

interregional interaction in the urban-ecological system of urban 

areas, in which the landscape heterogeneity feature of 

vegetation areas directly influence the characteristics of surface 

albedo, the impervious surface areas, and the spatial pattern 

landscape surface temperature. The final result of LCZ in 

Guangzhou (Figure 4) was divided into five classes based on 

the three principal components of the PCA by the SOM 

algorithm. The result remains stable as the size of input vector 

ranges from 10 to 50. 

Table 2.Total Variance Explained in PCA 

Component 

Initial Eigenvalues 

Total % of Variance Cumulative % 

1 4.113 68.542 68.542 

2 1.000 16.670 85.212 

3 0.548 9.134 94.346 

4 0.260 4.331 98.677 

5 0.060 0.997 99.674 

6 0.020 0.326 100. 000 

 

Table 3. The Component Matrix of all parameters in PCA 

 

Component  

1 2 

ISA -0.921 -0.013 

LST 0.727 -0.030 

MOIB 0.946 0.013 

MOOB -0.023 0.999 

NDVI -0.965 -0.008 

Surface 

albedo 
0.955 0.014 

 

The physical characteristics of LCZ are shown in Table 4. There 

are obviously differences in the physical characteristics of the 

mean value of %ISA, LST, MOIB, MOOB, NDVI and Surface 

Albedo in these five classes. Class 1 and Class 2 are the areas 

which have a high percentage of impervious surface areas 

(larger than 70%). These impervious surface areas are mainly 

located in the south-eastern part of Guangzhou with similar LST 

attributes (larger than 37. 2 °C), suggesting that the urban heat 

island phenomenon has influenced the built-up areas to a large 

degree. Since there is less than 1 °C difference between the 

entire urban climate zones, growing urban expansion and the 

urban heat island in Guangzhou has primarily influenced the 

sub-urban areas. 

Table 4. The physical characteristics of LCZ of UHI in different 

levels 

Class 
%ISA LST MOIB MOOB NDVI Surface 

1 12.4 36.5 484.6 465.3 0.747 326.8 

2 18.2 36.8 656.8 632.2 0.621 495.6 

3 47.4 37.0 777.6 746.1 0.558 633.9 

4 73.9 37.2 1154.3 1050.7 0.377 996.1 

5 87.5 37.8 1024.3 1000.7 0.337 871.1 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B8 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.  
doi:10.5194/isprs-archives-XLI-B8-1431-2016

 
1434



 

The mean values of MOIB, MOOB and land surface albedo in 

Class 4 are larger than that in Class 5, a possible explanation is 

that mixed-pixel problem in the medium resolution image leads 

to the uncertainty of the object-based spectral information for 

built-up areas. The spectral indicators based on medium 

resolution satellite data performed better in distinguishing the 

physical characteristics between the built-up areas and the 

vegetation areas than in separating the high density built-up 

area and low density built-up areas. Furthermore, the 

unregularly distribution of the formal and informal settlements 

in the urban areas of Guangzhou make the landscape 

configuration and composition analysis become more and more 

difficult. Nevertheless, these spectral indicators are still 

consistent with the %ISA and LST indicators and make a 

contribution to the exploration of the LCZ characteristics. 

 
 

Figure 4. The result of LCZ in August of 2011,Guangzhou  

 

 

5. DISCUSSION  

Five urban climate zones provide the basis of information for 

the local government to further sustainable urban planning. The 

results of urban climate zones in Class 1 and Class 2 show that 

almost all parts of the central business sub-district in the 

municipal district of Guangzhou is made up of impervious 

surface areas and also corresponds to high temperatures (higher 

than 37°C). This tendency gradually expanded to the south-

western districts of Guangzhou. The rapidly urban expansion 

has no doubt triggered a large area of urban heat island in the 

municipal district of Guangzhou. The urban heat island problem 

in this megacity should be enough to attract attention.  

Meanwhile, it is worth to notice that the reliability of our study 

is ultimately restricted by the uncertainty of remote sensing 

data. The seasons of the image acquirement, the quality of the 

satellite data, the short term weather condition, and the 

roughness of the land surface all ultimately influence the LCZ 

delineation. Our study chose the cloud-free image in August of 

2011, the historical climate data show that there is no extreme 

whether in that month and the temperature kept stable in the 

summer season, and the vegetation areas in Guangzhou, the 

southern part of China, were covered by the trees which were 

green all the year round. Therefore, the LCZ result is possible to 

demonstrate the local scale of UHI phenomenon in the summer 

season in 2011 to some extent. The LCZ results in other season 

will be inevitable influenced by the derivation of LST 

estimation, which is influenced by the uncertainty of 

atmospheric and astronomical. Besides, as the urban sprawl, the 

directional variation of the measured land surface temperature 

and shape-texture indicators would be intensified by built-up 

surface areas, such as business, residential and industrial 

districts. 

Our study can be considered as a first attempt to demonstrate 

how medium resolution satellite data can assist in quantifying 

parameters related to the urban climatology, with the ultimate 

goal of classifying the local climate zones of UHI. The medium 

resolution data from the Chinese HJ-1B satellite allowed 

mapping the percentages of impervious surface areas, landscape 

surface temperature, surface albedo, and landscape spectral and 

textural features thereof at a reasonable spatial resolution. 

Moreover, NDVI, which has the highest correlation coefficients 

with another five parameters, has demonstrated its significant 

influence on the local climate zones classification. It should be 

one of the most important parameters to be taken into 

consideration in the future urban climate zones exploration.   

According to integrate the relevant climate and spectral 

parameters, the SOM analysis enables the categorisation of the 

urban climate zones in Guangzhou without any training 

samples, it improves the training efficiency and avoids the 

influence of choosing training samples in the final results. Our 

model has the advantage of computational convenience, and can 

be widely applied in the future urban climate zone analysis. 

However, the inputs parameters may affect the reliability of the 

modelling. How to choose the spectral-textural-context 

indicators based on satellite data to describe the local scale 

urban climate zones is still the problem that needs to address in 

the next step.   

 

6. CONCLUSION 

Our results presented here offer several possible applications for 

future research. The correlations and contributions of results 

only suggest a possible way to automatically classify the urban 

climate zone, but other multi-resources data, including social-

economic data, multi-resources Earth Observation products 

with higher spatial resolution, and climate field survey data can 

all be integrated into our study, in order to get a more 

comprehensive urban human environment interaction model. 

Especially more earth observation high resolution satellite data 

will potentially help to evaluate the spatial-temporal dynamic 

change of urban areas, and provide the decision support for 

further sustainable urban planning. 
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