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ABSTRACT: 

 

Indoor surveying is currently based on laser scanning technology, which is time-consuming and costly. A construction model 

depends on complex calculations which need to manage a large number of measured points. This is suitable for the detailed 

geometrical models utilized for representation, yet excessively overstated when a simple model including walls, floors, roofs, 

entryways, and windows is required, such a basic model being a key for efficient network analysis such as shortest path finding. To 

reduce the time and cost of the indoor building data acquisition process, the Trimble LaserAce 1000 range finder is used. A 

comparison of neural network and a combined method of interval analysis and homotopy continuation in 3D interior building 

modelling for calibration of inaccurate surveying equipment is presented. We will present the interval valued homotopy model of the 

measurement of horizontal angles by the magnetometer component of the rangefinder. This model blends interval analysis and 

homotopy continuation. The results prove that homotopies give the best results both in terms of RMSE and the L∞ metric. 
 

1. INTRODUCTION 

3D spatial modelling involves definition of spatial objects, 

data models, and attributes for visualization, interoperability 

and standards (Chen at al., 2008). Due to the complexity of 

the real world, 3D spatial modelling leads towards different 

approaches in different Geography Information Science 

(GIS) applications (Haala and Kada, 2010). In the last 

decade, there have been huge demands for 3D GIS due to the 

drastic advancement in the field of 3D computer graphics. 

According to Chen et al. (2008) there is not a universal 3D 

spatial model that can be used and shared between different 

applications, and different disciplines according to their input 

and output have used different spatial data models. 

 

3D building modelling is an example of 3D spatial 

modelling. A building model has three spaces including a 

geometrical, a topological and a semantic space. This 

research focuses on the geometrical space. A topological 

model which is derived from a geometrical model defines 

relationships between connected and adjacent objects (e.g. 

rooms). A topological model is defined by a graph which is a 

navigable network consisting of nodes and edges. A semantic 

space presents attributes attached to geometrical and 

topological models. 
 

According to Donath and Thurow (2007), considering 

various fields of applications for building modelling and 

various demands, geometry representation of a building is the 

most crucial aspect of building modelling. For any kinds of 

emergency response, such as fire, smoke, and pollution, the 

interiors of the buildings need to be described along with the 

relative locations of the rooms, corridors, doors and exits as 

well as their relationships to adjacent spaces. The 

relationships between adjacent spaces need to be defined in a 

topological model. 
 

Topological modelling is a challenging task in GIS 

environments, as the data structures required to express these 

relationships are particularly difficult to develop. To generate 

a topological model, a valid geometrical model is required. 

Indoor surveying is vital when no other data sources are 

available (e.g. there are no paper plans or architectural 

models). Unfortunately, many methods used for land 

surveying cannot be easily applied due to the lack of a GPS 

signal from satellites in indoor building environments, 

limited working areas inside buildings especially in office 

spaces, and very detailed environments with furniture and 

installations.  
 

For many kinds of systems like disaster or emergency 

management systems, the interior models are essential 

(Boguslawski et al., 2011; Liu and Zlatanova, 2011). Indoor 

models can be reconstructed from construction plans, but 

sometimes they are not available or very often they differ 

from ‘as-built’ plans. In this case, the buildings and its rooms 

must be surveyed. Perhaps, the most utilized method of 
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indoor surveying is laser scanning. This method allows 

taking accurate and detailed measurements (Dongzhen et al., 

2009; Yusuf, 2007). 

This research intends to investigate complexity of interior 

building modelling and to demonstrate the feasibility of 

interior surveying. The proposed approach uses relatively 

cheap equipment: a light ‘Laser Rangefinder’ which appears 

to be the most feasible, but it needs to be tested to see if the 

observation accuracy is sufficient for the intended purpose: 

construction of a geometrical indoor building model. 

 

However, any measurement device must be calibrated in 

order to control the uncertainties. The formal definition of 

calibration by the International Bureau of Weights and 

Measures (BIPM) is the following: "Operation that, under 

specified conditions, in a first step, establishes a relation 

between the quantity values with measurement uncertainties 

provided by measurement standards and corresponding 

indications with associated measurement uncertainties (of the 

calibrated instrument or secondary standard) and, in a second 

step, uses this information to establish a relation for obtaining 

a measurement result from an indication." (Clifford, 1985). 

 

In this research, we provide a comparative analysis of 3D 

reconstruction and the indoor survey of a building using the 

Leica scanstation C10, the Trimble M3 and the Trimble 

LaserAce 1000 rangefinder. The Trimble LaserAce 1000 has 

been used for outdoor mapping and measurements, such as 

forestry measurement and GIS mapping (Jamali et al., 2013). 

A rangefinder can be considered as a basic mobile Total 

Station with limited functionality and low accuracy. The 

Trimble LaserAce 1000 is a three-dimensional laser 

rangefinder with point and shoot workflow. This rangefinder 

includes a pulsed laser distance meter and a compass, which 

can measure distance, horizontal angle and vertical angle up 

to 150 meters without a target, and up to 600 meters with a 

reflective foil target. The Trimble LaserAce 1000 will 

decrease the time and cost of the surveying process (Jamali et 

al., 2014).  
 

The rangefinder has been used for forest applications by 

several researchers. Wing and Kellogg (2001) investigated 

the use of the laser rangefinder for harvest boundary 

measurement and skyline corridors. The laser rangefinder 

was used in traversing stand boundaries (Liu, 1995) and for 

estimation of wood piles volumes (Turcotte, 1999). The use 

of a laser rangefinder combined with GPS, total station and 

GIS for forest resources data collection and data mapping 

was investigated by Wing and Kellogg (2004). 

 

Following this introduction, in Section 2, the data collection 

using a rangefinder is discussed. In Section 3, the rangefinder 

is calibrated using interval analysis and homotopy 

continuation in order to control the uncertainty of the 

calibration and of the reconstruction of the building. In 

Section 4, a neural network is used to minimize residual error 

of the rangefinder. Section 5 presents conclusions and future 

research. 

2. DATA COLLECTION 

 

According to device specifications, the accuracies of the 

Leica scanstation C10, Trimble LaserAce 1000 are as shown 

in Table 1. 

 

Table 1: Accuracies according to product specifications. 

 

Surveying 

Equipment 

Distance 

Accuracy 

Horizontal 

Angle 

Accuracy 

(degrees) 

Vertical 

Angle 

Accuracy 

(degrees) 

Leica 

scanstation 

C10 

±4 mm 12” 12” 

Trimble 

LaserAce  

±100 mm 7200” 720” 

 

To establish surveying benchmarks (control points), closed 

traverse surveying was used. Traverse surveying is a method 

of surveying for establishing control points along with 

traveling lines or movement paths. To get better results with 

less shape deformation (e.g. intersection and gap between 

two rooms due to low accuracy of Trimble LaserAce 1000), 

for each door, there should be a control point inside the 

corridor. For example, if a room has two doors, there should 

be two control points in the corridor to access that room by 

its two doors. There are 25 control points represented by Z1 to 

Z25 (see Figure 1), which represent the positions of the 

rangefinder inside the corridor or rooms. From the control 

points, slope distance, vertical angles and horizontal angles of 

top and down corners belonging to the room of interest will 

be measured (see Table 2).  

 

 

 
Figure 1: Floor plan by Trimble LaserAce 1000. 

 

Table 2: Measured slope distance (in meters), horizontal 

angles and vertical angles (in decimal degree) of top corners 

of room 1. 

 

Room 1 point 1 point 2 point 3 point 4 

slope distance 1 8.41 7.57 7.85 8.88 
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slope distance 2 8.4 7.58 7.85 8.87 

slope distance 3 8.41 7.58 7.86 8.88 

vertical angle 1 9.41 10.06 9.49 8.32 

vertical angle 2 9.23 10.36 10 8.84 

vertical angle 3 9.24 10.42 9.9 8.77 

horizontal angle 1 268.4 336 99.6 166.1 

horizontal angle 2 268.6 336.2 99.8 166.2 

horizontal angle 3 269.1 335.9 99.9 166.5 

 

Figure 2 shows the position of the rangefinder and measured 

points for room 1 (corners of the room 1). 

 
Figure 2: Room 1, where the red point represents the position 

of the rangefinder and black points represent measured 

corners. 

 

Coordinates measured by rangefinder are not as precise as a 

laser scanner or total station measurements. As seen in Figure 

3, results of Trimble LaserAce 1000 show the deformation of 

building geometry. 

 

 
Figure 3: 3D Building modelling by Trimble LaserAce 1000 

where dashed lines represent measured data from Trimble 

LaserAce 1000 and solid lines represent extruded floor plan. 

 

Figure 4 shows a 3D point cloud collected by the Leica 

scanstation C10. 
 

 
Figure 4: Point cloud data collected by Leica scanstation 

C10. 

 

Room 10 is our test case and room 1 is our reference (see 

Figure 5). 

 

 
 

Figure 5: Room 10 as a normal case where the red point 

represents the position of the rangefinder and black points 

represent measured corners. 

 

3. INTERVAL ANALYSIS AND HOMOTOPY 

CONTINUATION 

 

In this section, we will present our interval valued homotopy 

model of the measurement of horizontal angles by the 

magnetometer component of the rangefinder. This model 

blends interval analysis and homotopy continuation. Interval 

analysis is a well-known method for computing bounds of a 

function, being given bounds on the variables of that function 

(Moore and Cloud, 2009). The basic mathematical object in 

interval analysis is the interval instead of the variable. The 

operators need to be redefined to operate on intervals instead 

of real variables. This leads to interval arithmetic. In the same 

way, most usual mathematical functions are redefined by an 

interval equivalent. Interval analysis allows one to certify 

computations on intervals by providing bounds on the results. 

The uncertainty of each measure can be represented using an 

interval defined either by a lower bound and a higher bound 

or a midpoint value and a radius. 

 

In this paper, we use interval analysis to model the 

uncertainty of each measurement of horizontal angle and 
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horizontal distance done by the rangefinder. We represent the 

geometric loci corresponding to each surveyed point as 

functions of the bounds of each measurement. Thus, for 

distances observed from a position of the rangefinder, we 

represent the possible position of the surveyed point by two 

concentric circles centered on the position of the rangefinder 

and of radii the measured distance plus and minus the 

uncertainty on the distance respectively (see Figure 6). For 

horizontal angles observed from a position of the rangefinder, 

we represent the possible position of the surveyed point by 

two rays emanating from the position of the rangefinder and 

whose angles with respect to a given point or the north are 

the measured angle plus and minus the uncertainty on the 

horizontal angle, respectively (see Figure 6). Therefore, the 

surveyed point must be within a region bounded by these 

four loci: in between two concentric circles and two rays. 

Proceeding in the same way for each room, we get the 

geometric loci for each room and for the union of the 

surveyed rooms (see Figure 7). 

 

A homotopy is a continuous deformation of geometric 

figures or paths or more generally, functions: a function (or a 

path, or a geometric figure) is continuously deformed into 

another one (Allgower and Georg, 1990). A homotopy 

between two continuous functions f0 and f1 from a 

topological space X to a topological space Y is defined as a 

continuous map H: X × [0, 1] → Y from the Cartesian 

product of the topological space X with the unit interval [0, 

1] to Y such that H(x, 0) = f0, and H(x, 1) = f1, where x ∈ X. 

The two functions f0 and f1 are called, respectively, the initial 

and terminal maps. The second parameter of H, also called 

the homotopy parameter, allows for a continuous deformation 

of f0 to f1 (Allgower and Georg, 1990). Two continuous 

functions f0 and f1 are said to be homotopic, denoted by f0≃ 

f1, if and only if there is a homotopy H taking f0 to f1. Being 

homotopic is an equivalence relation on the set C(X, Y) of all 

continuous functions from X to Y. 
 

 
Figure 6: The geometric loci of one corner of a room as a 

function of its related measurements. 

 
Figure 7: The geometric loci of each corner of a room as a 

function of all the measurements. 

 

 
Figure 8: The reconstruction of Room 1 from original 

rangefinder measurements (red) and interval valued 

homotopy continuation calibration of horizontal angles 

measurements (blue). 

 

In this paper, we used homotopy to calibrate the rangefinder. 

The main idea is that the 360 degrees compass of the 

magnetometer is subject to continuous deformations, which 

do not induce any cut of any single part of this compass, nor 

any gluing of different parts of this compass. We can 

therefore think that the 360 degrees compass of the 

magnetometer is made of a highly deformable material like 

plastic, while the 360 degrees compass of the theodolite 

component of a total station is made of a very non-

deformable material like temperature invariant metal. The 

alteration of the magnetic field of the Earth when, for 

example, a truck is passing near the range finder, can be 

modeled as an elastic continuous deformation of the 360 

degrees compass of the magnetometer. Unlike in the previous 

methodologies, we only assume that the calibration of the set 

of our rangefinder measurements with respect to the set of 

measurements of our total station can be done continuously, 

because there is no discontinuity in the n-dimensional space 

corresponding to the space of measurements performed using 

the rangefinder and the total station. Even though not all real 

numbers are representable in a digital measurement device, 
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we can assume that all the real numbers corresponding to 

measurements can be obtained physically, and it is just the 

fixed point notation used by the digital measurement device 

that limits the set of representable real numbers to a discrete 

subset of the set of real numbers. Thus, we can compute the 

calibration of the rangefinder as a continuous function 

mapping our measurements obtained using our rangefinder to 

the measurements obtained using our total station, 

corresponding to the inverse elastic transformation from the 

flexible magnetometer 360 degrees compass to the rigid 360 

degrees compass of the theodolite component of the total 

station. 

 

The results of the linear homotopy continuation are shown in 

Figure 8 and Tables 3–5. One can calibrate the differences of 

horizontal angles observed with the rangefinder to the 

differences of horizontal angles observed with the theodolite. 

One can start from any point and assume that the 

measurement of the horizontal angle of that point by the 

rangefinder will not be changed by the calibration process. 

Without loose of generality, this point can be the first 

observed point. The idea for the calibration is that we are 

using each one of the intervals between measurements of 

horizontal angles made with the rangefinder. We calibrate the 

new measurements of horizontal angles made by the 

rangefinder in each one of these intervals as a non-linear 

homotopy, where the homotopy parameter is the relative 

position of the measured horizontal angle in between the 

bounds of the enclosing interval of rangefinder horizontal 

angles. This homotopy calibration can be visualized as the 

continuous deformation of each sector (defined by the 

rangefinder horizontal angle intervals of room 1) of a plastic 

disk (corresponding to the old time theodolite graduated disk) 

to the corresponding sector of the total station’s theodolite 

graduated disk. We used the intervals of total station 

horizontal angles of room 1 as reference intervals for all other 

horizontal angle measurements in rooms 1and 10.  

 

In the remainder of the paper, “the homotopy parameter of a 

horizontal angle measurement” is equivalent to “the relative 

position of the horizontal angle measurement in the 

corresponding reference interval.” We fitted a polynomial of 

degree 5 through the four points whose x-coordinates are the 

homotopy parameters of the horizontal angles measured by 

the rangefinder in room 10 and the corresponding homotopy 

parameters of the horizontal angles measured by the total 

station in room 10 and the points (0,0) and (1,1). We used 

this polynomial as the convex homotopy function that maps 

the uncalibrated homotopy parameter to the calibrated one. 

 

The initial and terminal maps correspond respectively to the 

mappings between the uncalibrated and calibrated horizontal 

angles at the start point and the end point of the enclosing 

interval of horizontal angles measured by the rangefinder. 

We can see that, contrary to the least squares calibration, the 

only limitation of this interval analysis and homotopy 

continuation-based calibration is the precision of the fixed 

point arithmetic used by the computing device used for the 

calibration. 

 

Table 3: Calibration of room 1 rangefinder horizontal angle 

measurements by homotopies (in decimal degrees). 

 

Point Rangefinder 

horizontal angle 

Theodolite 

horizontal angle 

Calibrated rangefinder 

horizontal angle 

Theodolite 

internal angle 

Calibrated rangefinder 

internal angle  

1 268.9 0 268.9 67.745139 67.745139 

2 336.0 67.745139 336.645139 122.85028 122.85028 

3 99.6 190.595419 99.495417 65.881667 65.881667 

4 166.1 256.477086 165.377083 294.264583 294.264583 

5 98.5 190.741669 99.641667 169.258333 169.258333 

 

Table 4: Calibration of room 10 rangefinder horizontal angle measurements by homotopies (in decimal degrees). 

 

Point Horizontal angle 

rangefinder  

Horizontal angle total 

station 

Value of 

λ 

Calibrated horizontal angle 

linear homotopy 

Calibrated horizontal 

angle 0.9325 

non-linear homotopy 

1 259.1 351 0.969504 259.753998 265.17 

2 355 86.3  0.198541 355.0770128 359.6978 

3 77.1 165.85 0.845307 77.50978924 81.0424 

4  180 274.92 0.220426 180.0977481 189.3224 
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Table 5: Calibration of room 10 rangefinder horizontal angle measurements using total station horizontal angle measurements by 

homotopies (in decimal degrees). 

 

Point Horizontal angle rangefinder  Horizontal angle total station Calibrated rangefinder horizontal angle 

(homotopy) 

1 259.1 

Δ2-1=95.9 

351 

Δ2-1=95.3 

265.17 

Δ2-1=95.3 

2 355 

Δ3-2=82.1 

86.3 

Δ 3-2=79.55 

1.0650 

Δ3-2=79.55 

3 77.1 

Δ4-3=102.9 

165.85 

Δ4-3=109.07 

80.6150 

Δ4-3 =109.07 

4  180  

Δ1-4=79.1 

274.92 

Δ1-4=76.08 

 189.6850 

Δ1-4= 76.08 

 

 

4. NEURAL NETWORK 

 

In this section, we used neural network (Gevrey et al., 2003) 

to minimize residual errors of the rangefinder measurement 

using Total Station measurement. An artificial neural 

network is designed by several interconnected nodes which 

are called neurons. In an artificial neural network, there can 

be three layers including input, hidden and output layer (see 

Figure 9). To train the artificial neural network, data is 

required to be divided into three datasets as training, 

validation and test data. Input data are the rangefinder 

measurements and target data are Total Station data. The best 

way to determine the most suitable number of hidden neurons 

is to train several networks. Few number of hidden neurons 

result in a higher total error and on the other hand, too many 

hidden neurons results in an over-fit function with an 

increased validation error. 

 

 

Figure 9: An artificial neural network architecture. 

 

Our training algorithm is Levenberg-Marquardt (Levenberg, 

1944; Marquardt, 1963; Moré, 1978; Lourakis, 2005). 

Levenberg-Marquardt algorithm is an iterative technique that 

determines the minimum of a multivariate function that is 

presented as the sum of squares of non-linear real-valued 

functions. It is a standard technique for non-linear least-

squares problems (Lourakis, 2005) (see Equation 1). This 

experiment has been done by Matlab neural network toolbox. 

𝑤𝐾+1 = 𝑤𝐾 − (𝐽𝐾
𝑇𝐽𝑘 + 𝜇𝐼)−1𝐽𝑘𝑒𝑘(1) 

Where µ is always positive, called combination coefficient, 

k is the index of iterations, 

w is the weight vector, 

e is error vector, 

J is the Jacobian matrix that contains first derivatives of the 

network errors with respect to the weights and biases, 

And I is the identity matrix. 

 

When the scalar µ is near zero, Gauss-Newton's method is 

used (see Equation 3). When µ is big, steepest descent 

method is used (see Equation 2). If the error (see Equation 4) 

is decreasing, which means that it is smaller than the last 

error; it indicates that the quadratic approximation on total 

error function is working and the combination coefficient μ is 

required to be decreased to reduce the influence of gradient 

descent part. If the error is increasing, which means it is 

larger than the last error; the combination coefficient μ is 

required to be increased (Yu and Wilamowski, 2011).  
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𝑤𝐾+1 = 𝑤𝑘−∝ 𝑔𝑘(2) 

𝑤𝐾+1 = 𝑤𝐾 − (𝐽𝐾
𝑇𝐽𝑘)

−1𝐽𝑘𝑒𝑘(3) 

g is gradient vector, 

α is the learning constant (step size), 

𝐸(𝑥,𝑤) = 0.5∑ ∑ 𝑒𝑝,𝑚
2

𝑚

𝑚=1

𝑝

𝑝=1

(4) 

Where x is input vector, 

w is the weight vector, 

ep,m is the training error at output m when applying pattern p 

(see Equation 5). 

𝑒𝑝,𝑚 = 𝑑𝑝,𝑚 − 𝑜𝑝,𝑚(5) 

Where d is the desired output vector, 

o is the actual output vector. 

Training process using Levenberg-Marquardt algorithm is 

explained as follows (see Figure 10): 

i. With initial weights which are randomly generated, 

total error (see Equation 7) is evaluated. 

ii. Equation 4 is used to update the weights. 

iii. Total error is evaluated with the new weights. 

iv. If total error is increased then we need to go back 

one step before and use previous weights. µ value 

is required to be increased as well. We need to 

move to step 2. 

v. If total error is decreased, we accept the update and 

we need to decrease µ value by the same factor 

used in step 4. 
vi. We need to move to step 2. Process continues till 

the total error is smaller than the desired total error 

value (Yu and Wilamowski, 2011). 

 

Figure 10: Block diagram for training using Levenberg–

Marquardt algorithm: wk is the current weight, wk+1 is the 

next weight, E k+1 is the current total error, and Ek is the last 

total error (Yu and Wilamowski, 2011). 

We used 70 percent of our total data for training, 15 percent 

for validation and 15 percent for test with 10 neurons as the 

hidden layer. The four plots represent the training, validation, 

testing, and all data. The targets are represented by the 

dashed line in each plot. The best fit linear regression line 

between outputs and targets is represented by the solid line. 

The R value represents the correlation between the outputs 

and targets. If R = 1, this means that there is an exact linear 

correlation between outputs and targets. If R is close to zero, 

then there is no linear correlation between outputs and 

targets. In our experiment, the training data shows a good fit. 

The validation and test results also represent R values that are 

greater than 0.9. The scatter plot is useful when certain data 

points have poor fits (see Figure 11).  

 

Figure 11: The training, validation, testing data, and all data 

plots. 

We have minimum number of results with residual errors of 

higher than 1 meter and maximum number of results with 

residual error of less than 0.1 meter (see Figure 12).  

 

Figure 12: Error histogram where blue color represents 

training data, green color represents validation data and red 

color represents test data. 

The best validation performance for error goal is 0.19733 

meter in iteration 21 (see Figure 13). 
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Figure 13: Performance histogram where blue line represents 

train data, green line represents validation data and red line 

represents test data. 

Gradient is equal to 0.037077 at iteration 27 and µ is equal to 

0.01 at iteration 27 (see Figure 14). 

 

Figure 14: The gradient, µ values and validation checks. 

 

Geometrical information using neural network and homotopy 

continuation for room 10 is presented in Table 7.  

 

Table 7: Calibration of room 10 rangefinder horizontal angle 

measurements using total station horizontal angle 

measurements by homotopies and neural network (in decimal 

degrees). 

Point Horizontal angle 

rangefinder  

Horizontal angle 

total station 

Calibrated rangefinder 

horizontal angle (homotopy) 

Calibrated rangefinder horizontal 

angle (neural network) 

Δ2-1 95.9 95.3 95.3 96.08 

Δ3-2 82.1 79.55 79.55 82.07 

Δ4-3 102.9 109.07 109.07 100.57 

Δ1-4  79.1 76.08 76.08 81.27 

 

The results shown in Table 7 prove that homotopies give the 

best results both in terms of RMSE and the L∞ metric (which 

corresponds to the maximum among all components of the 

input vector 𝐿∞(𝑥) = 𝑚𝑎𝑥{𝑥1, ⋯ , 𝑥𝑛} as can be read in 

(Rudin, 1980). 

 

5. CONCLUSIONS 

 

Rangefinder data was calibrated by neural network, which 

shows a maximum residual error of 8.5 degree and a 

minimum residual error of 0.78 degree in room 10 using 

neural network. However, the combined interval analysis and 

homotopy continuation technique calibration obtained by 

continuous deformation of the function mapping, the 

rangefinder measurements to the theodolite measurements 

allows a much better match, whose only limitation is the 

fixed point arithmetic of the computing device used to 

perform the computation. For room 10 using homotopy 

continuations, we have a residual error of 0 degree (see Table 

7). Our research group will investigate a topological 

mathematical indoor model reconstruction based on the 

homotopy continuation in the near future.  
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