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ABSTRACT:

Collecting data on aquatic biodiversity is very challenging because of the difficulty to access underwater ecosystems. Over the years,
field surveys have become easier and cheaper with the development of low cost electronics. Commercial and recreational vessels,
including sailboats, can now substantially complement expensive scientific surveys and arrays of observation buoys deployed across
the world oceans (Pesant et al., 2015, Karsenti et al., 2011). Meanwhile, a large variety of marine animals such as birds, mammals,
and fish have become data collection platforms for both biological and environmental parameters through the advent of archival tags.
It becomes obvious that data collection in coastal and high seas will become more popular and that citizen will play a growing role in
acquiring information on ocean dynamics (physical, chemical and biological parameters). However, currently, very few attempts have
been made to use Human beings as observation platforms. In this paper we describe large datasets (more than 200,000 pictures) that
have been recently collected along the coast of Mauritius by using popular and cheap platforms such as kite surf and Stand Up Paddle.
We describe the characteristics of the data collected and showcase how they can be geolocated and used to complement remote sensing
and mapping in order to drastically extend the current scope of ”old school” fieldwork. We point out some of the main limitations
encountered which need to be addressed to foster this citizen science approach such as data storage and transmission, deep learning to
automate image recognition. The methods are all based on open source softwares.

1. INTRODUCTION

There is nothing new in trying to make use of sailboats or surf-
boards to collect data. However we have very few examples of
up and running projects at this time. Even if the cost of sen-
sors is really low, this is mainly due to funding issues for what
regards platforms to carry the sensors (e.g. sailboats) and as-
sociated costs like satellite data transmission which is still very
expensive in high seas. However 3D printers are changing our
ability to customize platforms and the smart phones and related
sensors like action camera (which became natively waterproof)
can connect each other and coordinate a network of additional
sensors. Tracking the location of objects is a critical research
field on earth but, at this stage, human beings remain unexploited
biological platforms on oceans. This is only starting with big ves-
sels, AIS and initiatives like Global Fishing Watch (Kroodsma et
al., 2018) . Everybody can not afford a sailboat like Tara but many
already have both action camera and boards (surfboards, kitesurf,
SUP. . . ) which could be easily equipped to become efficient plat-
forms for coastal surveys. Action camera are not used for every
single session since conditions do not worth it all the time. How-
ever, instead of collecting images or videos about the unbeliev-
able performance of the riders, action cameras, if turned under-
water, might instead help to collect data about aquatic ecosys-
tems. By doing so, we believe that the data deluge can become
real for multiple coastal ecosystems and bring a lot of benefits and
services to the society. Long term survey of coral reefs in over-
crowded spots can quickly become a reality. Since action cameras
videos (most of the time uninteresting) are hosted for free online,

∗Corresponding author

data storage should not be an issue if data become really useful.
The main limitations at this stage remain in the small, but still
significant, economic and personal investment to turn his board
into a powerful citizen science machine. From an economic point
of view, out of surfing gears and actions cameras, our work has
been achieved for less than 50 euros by equipping both a kite surf
and a SUP boards and the cost was only related to drilling a hole
for the action camera to film underwater while riding. Actually
this was more a personal decision to be made. Once retired, like
people, old boards can not really be sold and often end their life
as memories hanged to the walls. However they can get a new life
and become much more useful than young fellows with a little bit
of customization. Since environmental consciousness should not
be the only motivation, we want to set up a system which deals
with safety and will be able to communicate the location to rescue
teams. For what regards possible uses of such data, we foresee
basic interest in seeing underwater landscapes, the possibility to
measure the impact of climate change (e.g. coral bleaching event
(Hughes et al., 2018a, Hughes et al., 2018b) or natural disasters
like hurricanes).

2. MATERIAL AND METHODS

In this section we present how we collected underwater and aerial
pictures. We will reuse the standardized terminology for ocean
observing systems to describe the platforms used to carry the sen-
sors and the method used for the deployments of this material in
order to collect our data.
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2.1 Human beings: Citizen kite surfing to foster data collec-
tion for marine ecology

Since years, citizen science has been identified as an efficient way
to increase the scale of fieldwork and data collection for ecology
(Dickinson et al., 2010). Leisure and outdoor activities (eg hik-
ing) are good ways to provide data for science through collabora-
tive platforms (eg Open Street Map, Flicker. . . ). Kite have been
used since years for aerial photography (Bryson et al., 2013) and
surfing is identified as an opportunity to monitor coastal ecosys-
tems (Brewin et al., 2016). Smartfin project already propose fins
to collect physical and chemical parameters while surfing (Bres-
nahan et al., 2017, Stern, 2016).

Figure 1. Citizen kite collecting underwater and aerial pictures
while surfing above coral reefs (Mauritius)

As shown in Figure 1, Kite surfing is thus a good opportunity to
collect data by equipping both the kite and the board.

2.2 Hardware: Platforms

The platform is the gear which is used to carry the sensors (in our
case the board or the kite). As shown in Figure 2d, different types
of boards can be equiped (by drilling a hole) and the equipment
of the kite itself is made by attaching the camera directly on the
kite.

According to the type of board and the type of camera the shape
of the box has to differ. The work is almost the same to equip
a board for surf, paddle, windsurf or kite and cameras have to
be set up in the middle of the board (not to close to the fins, see
Figure 2b). However kite twin-tips are a bit different as they are
symmetrical (see Figure 2c). So far, we used an handcraft wa-
terproof box to package sensors. At this stage, we still need to
develop waterproof boxes adapted to the different platforms. For
better results, low cost and open access to all, such a work should
be done in collaboration with Fablabs. In the case of Kite surf,
the kite and the board can be equipped for the same survey.

a) GPS and Action Camera b) Camera on a SUP

c) Twin-tip board bottom

d) Kite Camera

Figure 2. Setting up cameras on boards or on the kite

In the table 1, we compare the strength and weaknesses of the
different platforms used so far. Note that in the case of Kite surf,
the kite and the board can be equipped for the same survey.

2.3 Hardware: Sensors

So far we mainly used a GPS sensor along with an action camera.
Some recent action cameras already have a GPS sensor within but
most of them don’t and, in any case, GPS radio signal don’t reach
very far underwater. This is the reason why we used additional
systems to record the spatial tracks of the survey. A watch with
a GPS has been used to ensure our ability to collect GPS posi-
tions but any smart phone can now collect similar data with free
applications (eg GPS light). The GPS sensor was parameterized
to collect one location every second.

At some point, additional sensors are expected (e.g. sea surface
temperature, depth. . . ). We expect to build a waterproof case (by
using 3D printers) for sensors to be deployed on any platform.
Indeed, at this stage, even if action camera are often waterproof,
water is a strong limitation for GPS data transmission and to em-
bed electronic cards and sensors. For now, we used the following
sensors:

• onboard / underwater

– a basic GPS embedded in a Watch (eg Fitbit surge)
with 1 second-acquisition frequency

– Camera

– Sea Surface Temperature,

– next: Bathymetry, Water quality (smartfin project),
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• on the kite (lines of the kite are more than 20 meters high)
to get aerial pictures along with underwater pictures

– a light weight action camera with an embedded GPS
(eg Gopro session 5) which can be equipped with fil-
ters (e.g. polarized),

– future plan: multispectral, lidar.

Depending on areas, we believe that very high resolution maps
(less than 1 cm) could be generated with a mosaic of aerial pic-
tures. However, to achieve this, there is a need to manage accu-
rately the height and angle of the camera since the kite is often
going up and down (with an Inertial Measurement Unit, IMU).

2.4 Open Source Softwares

This project aims first at providing the hardware and softwares for
anybody interested in collecting data while surfing. To achieve
this, a set of open source codes has been created to deal with the
collected data. All codes (mainly R) can be executed on a Linux
OS:

• As delivered by the GPS sensor, data are provided with pro-
prietrary tcx format which can be turned into GPX data by
using the cycleRtools package or online applications (eg
gpsvisualizer.com). GPX format can then be then turned
into any spatial data format using gdal library.

• gpscorrelate has been used to geolocate underwater pictures
colleced by action cameras.

• metadata of deployments (sessions) have been edited with
a simple CSV which can be uploaded and collaborativaly
edited as a google spreadsheet. The google spreadsheet is
then programmaticaly accessed from R (by using the gsheet
package) and turned into OGC 19115 metadata standards
for geographic information (by using the R geometa pack-
age (Blondel, 2017) to generate ISO 19115 metadata and
geonapi to push metadata directly in a Geonetwork catalog).
Such codes can be compiled online by using RStudio server.

• pictures metadata have been extracted by using the exifR
package and are then stored in a PostgreSQL / Postgis
database to improve data management (including tags of im-
ages to train Neural Networks).

• maps have been generated by using QGIS (QGIS Develop-
ment Team, 2009).

All codes used to synchronize GPS and camera, rotate images
and create metadata will be made available online in the coming
months.

2.5 Methods / deployments

First tests have been performed on coastal areas with clear wa-
ter in order to collect underwater pictures. Our primary goal was
to test our method to collect data on coral reefs habitats. Data
presented in this paper all come from lagoons and related exter-
nal slopes of Mauritius. However, it is clear that similar data
can be collected wherever water is clear and shallow enough and
where people can practice similar activities (snorkeling, paddle,
kayak. . . on rivers, fjords, abers, . . . ).

a) Kite b) Kite

c) Paddle d) Paddle

e) Surf f) Snorkeling

Figure 3. Different types of survey trajectories according to the
gears used

Data described in this paper, have been mainly collected by using
a kite surf and a paddle but we tested the method by snorkeling
and surfing. As explained in 2.2, kite surfing is particularly in-
teresting to cover wide areas with shallow water and it enables to
combine both aerial and underwater surveys.

We used two different kinds of action cameras with the snapshot
mode to collect picture at a frequency of half a second. This way
we expected 7,200 pictures per hour. For last deployments we set
up cameras for both the board and the kite in order to synchronize
aerial and underwater survey as shown in figure 2d. The action
camera used for the kite directly embeds a GPS.

3. RESULTS

In this section we present some preliminary results. We will first
describe some examples of deployments (surveys) and samples
of related data (underwater and aerial pictures).

3.1 Surveys

So far, more than 30 deployments have been performed in differ-
ent lagoons and more than 200,000 images have been collected.
Since GPS and camera use different clocks, we had to correlate
them to infer the geolocation of each picture (same issue happens
with temperature observations). The Figure 3 showcase differ-
ent kinds of tracks depending on platforms used (Kite, SUP, surf,
snorkeling).

As expected, surf sessions cover very limited areas because they
are focusing on the peak of waves and paddling is very slow. Pad-
dle have the same characteristics as surfboards when surfing but
most of people use SUP to go anywhere which makes SUP more
intersting than surfboards to collect high quality data. However,
they are usually as long as kite or paddle sessions which means
that we will have some oversampling on these spots which will
enable long term observation network to get time series, accurate
3D mapping. . . Kite surfing are way faster, can go anywhere but
image quality is lower at full speed (a 2 hours survey can cover
more than 50 km).
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Figure 4. Location of all pictures collected in Le Morne lagoon
so far (16 sessions: kite, snorkeling and paddle)

The Figure 4 gives an overview of what can be achieved within a
lagoon with multiple (16 in this case) sessions.

This gives an outlook of how citizen science could be used in
some specific spots to get time series for coral reef monitoring.

3.2 Underwater pictures

Depending on the platforms (kite, paddle. . . ) the speed and thus
image quality and covered areas are very different. The Figure 5
gives examples of underwater images (with a very good quality).

As human beings we tend to only consider good quality pictures:
good light and visibility as well as other aesthetic criteria. How-
ever most of data collected when surfing are collected randomly
since the rider don’t know exactly when the picture will be taken.
Indeed, when riding at 20 knots, images are taken every 5 me-
ters if the snapshot mode is parameterized with a half a second
frequency.

For what regards blurry images, it is important to remind that cur-
rent image recognition algorithms can deal with noise and low
quality data to recognize habitats. Convolutional Neural Net-
works have shown their ability in making use of low quality im-
ages. At this stage, we expect that even low quality images will
become useful.

Depending on environmental conditions (sun, wind, rain, wa-
ter depth) and depending on the platforms (kite, paddle. . . ) the
speed, the surface of covered areas and thus image quality are
very different.

For some deployments, we have been able to combine underwater
pictures with aerial pictures taken from the kite.

3.3 Aerial pictures

At this stage, aerial pictures have been collected to showcase how
the combination of underwater and aerial surveys can bring valu-
able results. Kite have been used since years for aerial photogra-
phy (Bryson et al., 2013). However, kites used for surfing are not
as stable since they are constantly moving up and down.

Since aerial images overlap, we could get a photo mozaic all
along the survey. However, to achieve this, we need to set up an
additional sensor to monitor the angle of the camera (IMU) and
enable the orthorectification of highly heterogeneous images.

The Figure 6 shows examples of aerial survey and illustrates how
they could be used to complement traditional aerial surveys or
remote sensing data. Figure 6c shows two rays at the surface.

a) Seagrass (Kite) b) Algae (Kite)

c) Corals (Paddle) d) Coral (Paddle)

e) Turtle and seagrass (kite) f) rays (kite)

g) Acanthaster (kite) h) Fish and coral bleaching

Figure 5. Examples of underwater pictures

a) Corals and seagrass b) Corals

c) Algae field with two rays

Figure 6. Examples of aerial pictures
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3.4 Related applications

We foresee different applications to exploit these data in our do-
main of interest. However it is clear that these data might be used
in many other ways and should be shared with the community.

3.4.1 Image recognition with deep learning Deep learning
can be used to automate image processing and recognition (Bei-
jbom et al., 2015). In our case such a technology is key to deal
with the large amount of data which can be collected.

As a very first step, we checked that generic deep learning algo-
rithms were able to recognize objects on our images (see Figure
7)

Figure 7. Amazon Web Service: image recognition of a ray

In order to train neural networks to recognize specific objects, it
is required to annotate some images which contains these objects.
In addition, pictures used for training of neural networks have to
be resized since the native size (3648*2736) is too big and should
be not exceed 500*500.

Constitutional Neural networks (CNN) are expected to manage
recognition at different scales:

• blurry images (and those out of water) recognition to sepa-
rate images which can’t be exploited from good ones

• objects (nets, sand, wood),

• taxon or species (corals, sea cucumbers, turtles, seagrass,
algae, fish, rays...),

• habitats (through the combination of species and environ-
ment: sand, seagrass, corals, dead corals, external slope of
reefs...)

• individuals (marine mammals, turtles. . . ).

A first part of the work is going to be run in our research unit (tags
of pictures and CNN). Thereafter we plan to set up a kaggle com-
petition (https://www.kaggle.com/competitions) or simi-
lar challenges (eg SEACLEF (Joly et al., 2017)) to improve the
quality of image recognition.

Once image recognition will work, we will thousands of points
with additional attributes indicating what kind of objects have
been identified in related locations.

3.4.2 Mapping Coastal Areas Images are geolocated and,
for some of them, overlap. Depending on the quality of images,
they might be used in different ways for mapping.

GIS and remote sensing

Our main goal was to map coral reef habitats by using collected
pictures as fieldwork and observations to validate maps. Indeed
most of the fieldwork has to be done with a boat and researchers
snorkelong or diving. We will thus complement the traditionnal
approach with additional pictures annotated by deep learnig al-
gorithms (CNN).

Photogrammetry: 3D mapping of coral reefs

From images which overlap (depending on speed and time lapse)
or videos, it is possible to obtain 3D models with stereoscopic
methods. Since images are geolocated, it becomes possible to
estimate the depth as well.

Figure 8 shows an example of 3D mapping of a coral reef which
has been made by using pictures collected from a paddle.

Figure 8. 3D mapping from coral reef images collected from a
paddle

In the coming months we will focus on collecting higher quality
images to showcase how SUP can be used for 3D mapping of
coral reefs.

3.4.3 Coastal Zone Management More widely, such data
(GPS tracks and pictures) can be useful to manage coastal zones
by getting a better knowledge of areas of practice, avoid risks and
potential conflict uses. This type of data is now key for Marine
Spatial Planning.

However since such data might be reused in other ways, we plan
to release them as open data in the coming months.

4. DATA MANAGEMENT

Since we aim at making the acquired data available for coastal
and ocean observing systems, we promote the compliance with
widely used standards for data management (in particular OGC
standards).

4.1 Repositories for open data storage and access

Making these data open by uploading them on Zenodo (except
potential issues with endangered sedentary species) has been
identified as a good way to ensure long term data archiving, dis-
semination and citation (DOIs). Various repositories can be used
for such research data:

• Zenodo and pangea to store raw data

• Kaggle will be used as another channel to disseminate re-
sized pictures (since deep learning requires lighter images).
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However, since sharing location of certain species can become an
issue for biodiversity (e.g. fostering illegal fishing), we plan to
set up an image recognition algorithms prior to any data sharing.
However it might be possible to share images without sharing
location in order to enable image recognition on photos.

Since publishing data on zenodo only requires a minimum set
of metadata elements (Datacite standard), we decided to enrich
these basic metadata elements to foster data discovery for the ma-
rine domain community. To achieve this, we chosed to comply
with geographic metadata standards (OGC / ISO TC 211 stan-
dards).

4.2 Metadata and data access

Data discovery is driven by metadata. In addition to pictures
metadata (exif), we decided to describe the series of images
(meaning the sessions) in order to enable spatial and temporal
queries. OGC metadata have been generated by using google
spreadsheets and open source codes (for both R packages and
scripts). R geometa package (Blondel, 2017) has been used
to generate ISO 19115 metadata and geonapi to push them in
Geonetwork. Metadata from different deployments can be stored
in a Postgres / Postgis database.

Usually the raw data record is a picture which might need to be
resized or rotated (eg for image recognition through neural net-
works) and has to be geolocated. Once underwater pictures col-
lected, they have thus been processed to correlate the clock of
onboard action cameras with GPS data clock (by correlating the
watch of the action camera with the one of the GPS, as described
in section 2.4). This way, we infer the location of each picture,
store the latitude and longitude in the headers of jpeg files and
obtain geolocated pictures which can be displayed on a map (see
Figure 9).

Figure 9. Correlation of pictures and GPS tracks

A the end of the workflow, some of the exif metadata stored
in the headers of JPG files have been extracted and stored with
the deployment metadata in a PostgreSQL/Postgis database wich
can be used to filter images and store tags (in particular labels
to train neural networks). Amon possible metadata elements
we extracted the following ones: SourceFile, FileName, Direc-
tory, GPSLatitude, GPSLongitude, GPSPosition, GPSDateTime,
DateTimeOriginal, LightValue, ImageSize, Model.

5. CONCLUSION AND OUTLOOKS

This paper presents preliminary results of an ongoing project
which aims at collecting data on aquatic ecosystems by using cit-
izen contributions through sports like kite surfing, SUP, snorkel-
ing. The suggested method showcases how thousands of images

can be collected every day by one single rider. In addition, it is
possible to acquire data on other environmental parameters (tem-
perature, depth. . . ). The first tests are promising for what regards
the quality of pictures which can be geolocated by using exter-
nal or embedded GPS and can be used by Neural Networks to
automate image recognition. Indeed, at this early stage, we al-
ready have valuable pictures and we face data storage and data
processing issues. Methods for data description, storage and pro-
cessing are key in the context of citizen sciences. A workflow
for data management is required to ensure that a collaborative
approach will be sustainable and will enable to properly manage
the life cycle of pictures and other observations which will be col-
lected in the long term. A first workflow has been set up by using
open source codes and softwares. However we need to find sim-
ple ways to get new citizen scientists onboard and we still face
multiple challenges to equip platforms, simplify data transmis-
sion and customize sensors. One of the mshort term challenge
consists in improving the accuracy of GPS location (using Real
Time Kinematic, RTK) and in managing the angle of pictures
taken from the kite (Inertial Measurement Unit, IMU). This will
require some work to customize the camera with additional low
cost components. In addition we plan to add some additional
sensors (like fins from smartfin project to collect environmental
parameters). Since we estimate that an active contributor can pro-
vide more than 1TB of pictures per year, such a project needs to
facilitate data transmission as well as data processing and visu-
alization. Links with external communities (eg OSM for spatial
data sharing or Pl@ntnet) will be key to foster the growth of such
a project.
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Table 2. Examples of Exif metadata extracted from headers of
JPG files
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