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ABSTRACT:

Early stress detection is critical for proactive field management and terminal yield prediction, and can aid policy making for
improved food security in the context of climate change and population growth. Field surveys for crop monitoring are destructive,
labor-intensive, time-consuming and not ideal for large-scale spatial and temporal monitoring. Recent technological advances in
Unmanned Aerial Vehicle (UAV) and high-resolution satellite imaging with frequent revisit time have proliferated the applications
of this emerging new technology in precision agriculture to address food security challenges from regional to global scales. In
this paper, we present a concept of UAV and satellite virtual constellation to demonstrate the power of multi-scale imaging for
crop monitoring. Low-cost sensors integrated on a UAV were used to collect RGB, multispectral, and thermal images during the
growing season in a test site established near Columbia, Missouri, USA. WorldView-3 multispectral data were pan-sharpened,
atmospherically corrected to reflectance and combined with UAV data for temporal monitoring of early stress. UAV thermal and
multispectral data were calibrated to canopy temperature and reflectance following a rigorous georeferencing and ortho-correction.
The results show that early stress can be effectively detected using multi-temporal and multi-scale UAV and satellite observation; the
limitations of satellite remote sensing data in field-level crop monitoring can be overcome by using low altitude UAV observations
addressing not just mixed pixel issues but also filling the temporal gap in satellite data availability enabling capture of early stress.
The concept developed in this paper also provides a framework for accurate and robust estimation of plant traits and grain yield and
delivers valuable insight for high spatial precision in high-throughput phenotyping and farm field management.

1. INTRODUCTION

Changes in precipitation patterns and temperature variability
due to climate change are expected for many parts of the world,
threatening global food security and resulting in tens of billions
of dollars in crop damage. Best farming strategies should focus
on early detection of water stress so that decisions on preventive
measures can be made in a timely manner.

Field surveys have been used extensively for agricultural
management, but they are destructive, labor-intensive,
time-consuming and not ideal for large-scale spatial and
temporal monitoring. Satellite remote sensing has been
used widely for vegetation water stress detection (Kogan,
1995, Seguin et al., 1991) utilizing a broad spectrum of visible
and near infrared (VNIR) (Ghulam et al., 2008), thermal
infrared (Anderson et al., 2012, Han et al., 2016, Sagan et al.,
2019) to microwaves (Chakraborty et al., 2016, Steele-Dunne
et al., 2017). However, several limitations exist with current
satellite platforms for agricultural and crop physiology
monitoring primarily due to coarser ground sampling distance
(GSD) and insufficient revisit frequency which are not
suitable for field-level studies (Sagan et al., 2019). Detailed
monitoring crop physiology may require near daily revisits to
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accurately monitor physiological changes that are dependent
on atmospheric conditions such as rainfall and temperature.
Furthermore, plant physiology changes on a cyclical diurnal
nature based on photosynthetic activity and processes
dependent on incident solar radiation. Current satellite sensors
with sufficient temporal revisit time (i.e. MODIS, Sentinel-3,
etc.) of about one day lack the fine spatial resolution required
for local scale monitoring rang in GSDs from 250-500m.
Given this coarse spatial resolution, issues arise due to spectral
mixing between soil, crops, and surrounding areas that degrade
the spectral purity and hinder modeling efforts (Damm et al.,
2018). While moderate resolution satellites such as Landsat-8
and Sentinel-2 provide sufficient spatial resolution to combat
mixed pixels and spectral uncertainty they lack temporal
resolution with revisit times of about 8-16 days, which is
not ideal for capturing key phenological developments or
detection of early stress. As a precursor to impending drought,
failure to detect early stress may result in advancing stress
beyond recovery, causing a large-scale vegetation dieback and
community shifts.

Unmanned Aerial Vehicle (UAV)-based monitoring systems
serve as an ideal solution for field-scale crop monitoring
providing high spatial and temporal revisit times necessary
to capture plant physiological changes. Although UAV-based
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Figure 1. Test site location and UAV-based RGB imagery captured by Mavic Pro with restricting plant roots to different
depth and undisturbed areas along with north-south orientation as well as between rooting depth treatments. The figure

was modified after (Hoyos-Villegas et al. 2014, Sagan et al. 2019).

remote sensing is limited in its ability for large-scale
monitoring, it is becoming a precondition for satellite
remote sensing with its capability to build and test
field-scale models that can be scaled to regional and
global scales by translating UAV-based models to satellite
observations. Recent technological advances in UAV platform
and sensor technology and high-resolution satellite imaging
(e.g., WorldView constellation and Plant Scope) are expanding
the applications of this emerging new technology in precision
agriculture to address food security challenges globally.

The objectives of this paper were to demonstrate the concept
of temporal data fusion in the context of UAV and satellite
virtual consultation to estimate pre-visual indicators of crop
water stress. Both multi-day satellite images and diurnal UAV
datasets were collected over an open agricultural experimental
site located near Columbia, Missouri, USA in the growing
season of 2017. Early stress developments and recovery was
analyzed using WorldView-3 and UAV datasets.

2. STUDY AREA AND DATA

2.1 Study site

The study area is located at the University of Missouri Bradford
Research Center near Columbia, Missouri, USA (Latitude
43o05′30′′N , Longitude 56o92′24′′E) within the continental
humid climate zone. Measured by an on-site weather
station, the average monthly growing season temperature and
precipitation were 17.4oC/114mm in May, 22.6oC/82mm
in June, 25.0oC/116mm in July, 21.0oC/77mm in August,
20.2oC/20mm in September, and 13.8oC/98mm in October
(Maimaitijiang et al., 2019).

Based on a randomized entry location with four replications, the
experimental field, which was approximately 61 m wide and 77

m long, was excavated perpendicular to the length of the field
to 0.3 m, 0.45 m, 0.6 m, 0.75 m, and 0.9 m depths at which a
plastic barrier was placed to limit rooting depth prior to refilling
the excavated channels (Figure 1). Between each of the rooting
depth treatments, the soil profile was not disturbed in order
to represent normal field conditions at this site. Experimental
factors were controlled, including weed control applied in
advance of soybean (Glycine max) planting on 18 April 2017.
No insect or pest control was required. Five soybean genotypes,
including three varieties (’MO4301M’, ’Dwight’, and ’Pana’)
and two plant introductions (PI398223 and PI567201A) were
planted in four row wide passes (0.76 m between rows) along
the entire length (north-south orientation) of the field.

Figure 2. a) DJI S1000+ UAV platform with b) Parrot
Sequoia multispectral camera and FLIR Vue ProR thermal

imager and c) Trimble R8 GNNS surveying system.

2.2 Data

UAV data was collected using a DJI S1000+ (DJI Technology
Co., Shenzhen, China) octocopter platform intergrated with
a Pixhawk 2.1 (Hex Technology Limited, Xiamen, China)
autopilot enabling custom mission planning and user-defined
waypoint operations (Figure 2a). A custom multi-sensor
payload tray was designed for the S1000+ platform which
held the multispectral (Parrot Sequoia) and thermal (FLIR
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Vue Pro R) sensors utilized for UAV data collection in this
study. The Parrot Sequoia is a high-resolution multispectral
camera consisting of four 1.2 MP global shutter narrowband
spectral cameras that image in the green (550 nm), red (660
nm), red-edge (735 nm) and near infrared (790 nm) spectral
bands, in addition to a 16 MP rolling shutter RGB camera
(Figure 2b). The FLIR Vue Pro R 640 model is comprised of
a 13mm lens with a 30 Hz frame rate to record temperature
measurements in the 7.5 - 13.5 m spectrum range with a +/-
5C measurement accuracy (Figure 2b). Data collection flights
were planned using an open-source ground-station controller,
Mission Planner (ArduPilot), and were designed using a
striping pattern that optimizes photogrammetric data collection.
Multispectral and thermal UAV data collection flights were
conducted on two dates during the same growing season. One
flight was conducted on 20 July 2017 and a series of flights
for diurnal analysis were conducted on 4 August 2017 at 0845,
1045, 1230, 1435, and 1655. All data collection flights utilized
the same planned mission parameters and pattern.

WorldView-3 (WV3) (Digital Globe Inc.) VNIR and SWIR
imagery were tasked for 16 July 2017 and 22 July 2017 to
coincide with UAV and ground truth data collection on 20 June
2017. WV3 is a high resolution multi-payload satellite which
provides 31 cm panchromatic resolution, 1.24 m multispectral
(VNIR) resolution and 7.5 m SWIR resolution. Eight VNIR
bands are imaged in the coastal (400450 nm), blue (450510
nm), green (510580 nm), yellow (585625 nm), red (630690
nm), red edge (705745 nm), NIR1 (770895 nm) and NIR2
(8601040 nm) wavelength regions. Eight SWIR bands are
imaged in SWIR-1 (11841235 nm), SWIR-2 (15461598 nm),
SWIR-3 (16361686 nm), SWIR-4 (17021759 nm), SWIR-5
(21372191 nm), SWIR-6 (21742232 nm), SWIR-7 (22282292
nm) and SWIR-8 (22852373 nm) wavelength regions.

In addition to remote sensing imagery collection, the Trimble
R8 Global Navigation Satellite System (GNSS) surveying
equipment with both an integrated antenna and receiver was
used for the real-time kinematic (RTK) GNSS surveying of 5
targeted ground control points (GCPs) in the field (Figure 2c).

3. METHODS

3.1 UAV image processing

Collections of multispectral images acquired from a UAV
integrated Parrot Sequoia camera, and thermal images
from the FLIR camera were orthorectified and mosaicked
through Pix4Dmapper software package (Pix4D SA, Lausanne,
Switzerland). Geographic information of five survey grade
high-accuracy GCPs were loaded into the Pix4Dmapper
processing workflow, to improve scale and geometry accuracy
of the orthomosaics (Maimaitijiang et al., 2019). The
radiometric calibration of multispectral imagery was conducted
during the Pix4Dmapper processing workflow utilizing the
real-time irradiance values captured by the solar irradiance
sensor during the flight (Maimaitijiang et al., 2017). Using
synchronously measured surface temperature during the UAV
flight, and corresponding thermal imagery values, empirical
line method based calibration model for FLIR thermal images
was established. This model is able to convert at-sensor
radiometric temperature of FLIR thermal images to surface
temperature in degrees Celsius (C), and accounts for emissivity
and atmospheric impact to some extent (Berni et al., 2009).
The details of the thermal imagery calibration procedures was
outlined in (Sagan et al., 2019).

Figure 3. Spatiotemporal change of NDVI. Spatial
distribution of NDVI calculated from WV3 satellite data

acquired on 16 July 2017 (a), NDVI calculated from UAV
data collected on 20 July 2017 (b), and (c) shows NDVI
from WV3 data collected on 22 July 2017. The figures

show the NDVI values change from north to south of the
field from 0.3 m rooting depth to 0.45 m, 0.6 m, and 0.75
m rooting depths divergence. It is worth to note that the
lowest NDVI spots distributed over the images represent

locations of destructive biomass sampling

3.2 Satellite image processing

Radiometric calibration was carried out for WV3 imagery
to convert the raw digital number (DN) to Top of the
Atmospheric (TOA) radiance using ENVI 5.4.1 software
(Harris Visual Information Solutions, Boulder, CO, USA).
Then atmospheric correction was conducted using Fast
Line-of-Sight Atmospheric Analysis of Spectral Hypercubes
(FLAASH) algorithm embedded in the ENVI software
package, followed by the conversion of the WV3 image
radiance values to surface reflectance (Sidike et al., 2019).
Geometric calibration was not applied because of the flat
topography of the study site. Finally, high resolution WV3
multispectral reflectance images were created using 0.3 m
spatial resolution panchromatic data based on Gramm-Schmidt
Pan Sharpening tool of ENVI software (Hartling et al.,
2019). UAV orthomosaics and satellite reflectance images were
co-registered and geo-referenced to WGS 1984 UTM Zone
15 N generating a unified imagery dataset using ArcGIS 10.4
software for further analysis.

3.3 Statistical analysis

Commonly used vegetation indices (VIs) such as NDVI
(Normalized difference vegetation index), GNDVI (Green
normalized difference vegetation index) and NDRE
(Normalized difference red-edge index) were calculated
using UAV multispectral and WV3 imagery in order to monitor
the temporal and diurnal change of crop water stress. Plot-level
mean canopy temperature and VIs were extracted using zonal
statistics tool of ArcGIS 10.4 software. To compare and
evaluate the impact of different water treatment, one-way
analysis of variance (ANOVA) with an honest significant
difference (HSD) Tukey test ( = 0.05), was implemented to
plot-level canopy temperature and VIs values with IBM SPSS
software (version 24, IBM Corp., Armonk, NY, US).

4. RESULTS AND DISCUSSION

4.1 Temporal evolution of stress

Multitemporal measurement of three different VIs (NDVI,
NDRE, GNDVI) that are sensitive to plant traits, such as
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Table 1. Band information comparison of WV3 satellite and UAV multispectral sensors.

Figure 4. Spatiotemporal change of NDRE. Spatial
distribution of NDRE calculated from WV3 satellite data

acquired on 16 July 2017 (a), NDRE calculated from
UAV data collected on 20 July 2017 (b), and (c) shows
NDVI from WV3 data collected on 22 July 2017. The

figures show the NDRE values change from north to south
of the field from 0.3 m rooting depth to 0.45 m, 0.6 m, and

0.75 m rooting depths divergence

Figure 5. Spatiotemporal change of GNDVI. Spatial
distribution of GNDVI calculated from WV3 satellite data

acquired on 16 July 2017 (a), GNDVI calculated from
UAV data collected on 20 July 2017 (b), and (c) shows
GNDVI from WV3 data collected on 22 July 2017. The
figures show the GNDVI values change from north to

south of the field from 0.3 m rooting depth to 0.45 m, 0.6
m, and 0.75 m rooting depths divergence

chlorophyll, biomass and leaf area index (Gitelson et al., 1996),
were investigated as shown in Figures 3-5. The core drought
simulation experiment was conducted from 16 July 2017 (a
day followed a small amount rain, representing no water stress)
to 22 July 2017 when shallower rooting depths were exposed
to significant stress. With increasing temperature and no rain
period as shown in Figure 6, all treatments except 0.9 m rooting
depth were exposed to mild (0.75 m rooting depth) to severe
water stress (0.3 m rooting depth). The corresponding data
were obtained by collecting WV3 satellite imagery on 16 July
(no water stress as light rain were observed prior days) and 22
July 2017 (stress was advanced to most of the treatments), and
UAV-data on 20 July 2017 (mild stress was developed). The
temporal changes of NDVI (Figure 3) in the satellite (Figure
3(a) and (c)) and UAV (Figure 3(c)) platforms indicated the
capacity for photosynthesis. The lower NDVI on 20 July can
be associated with local temperature variations (Figures 6 and

Figure 6. Daily average of temperature and precipitation
during core stress experiment conducted in July 2017.

There was no rain during the one week stress experiment
starting from 16 July to 22 July 2017, and higher air
temperature during the experiment enabled effective

simulation of early stress that were captured by
UAV/satellite temporal data fusion. Arrows indicate the

start/end dates of stress development

8) where higher temperature regions in the images have the
corresponding lower NDVI value in general. A similar trend
is also observed from NDRE (Figure 4) and GNDVI (Figure
5) images. Compared to NDVI, NDRE and GNDVI have
demonstrated better dynamic variation in satellite imagery to
represent canopy cover status in the field over time. This
is likely attributed to the higher sensitivity of NDRE and
GNDVI to biochemical variables of plants such as chlorophyll
and N concentration which avoids early saturation of NDVI
(Cammarano et al., 2014, Eitel et al., 2011, Gitelson et al.,
1996). In detail, more N and chlorophyll stress are detected
on 22 June from WV3 imagery as well as 20 June from UAV
imagery.

Figure 7 depicts temporal changes of canopy NDVI, NDRE
and GNDVI for different water availability imposed by the
five incrementally increasing rooting depth treatments. As
expected, more limited on rooting depth (i.e., 0.3 m excavated
channels), which constrains plant available soil moisture,
lowered values of NDVI, NDRE and GNDVI. Furthermore,
the collection date with the highest temperature (on 22 July;
Figure 6) resulted in the lowest values of NDRE and GNDVI,
which corresponds to the reduction of biochemical variables
such as chlorophyll content and exposed leaf area as leaf
temperature increases (Maimaitijiang et al., 2017). It is worth
mentioning that NDVI did not decrease on 22 July compared
to 20 July (Figure 7 (a)). The reasons could be two-fold:
1) The data collection platform is different. Data from 20
July was acquired by UAV multispectral sensor (PARROT
SEQUOIA) whereas the WV3 satellite sensor was used in 22
July, suggesting that different sensor properties such as band
width (Table 1) may cause inconsistent results. 2) NDVI is
affected by soil background reflectance at low canopy cover
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Figure 7. Temporal change of canopy NDVI, NDRE and GNDVI with different water treatment during the experiment.
The indices were averaged over each rooting depth after soil removal

Figure 8. Spatial distribution of canopy temperature
derived from UAV thermal imagery on 20 July 2017,

which shows stress development from north to south of
the field from 0.3 m rooting depth to 0.45 m, 0.6 m, and

0.75 m rooting depths. It is worth to note that regular
pattern of high temperature spots distributed over the

image represent locations of destructive biomass sampling

(Rondeaux et al., 1996), whereas more soil background can be
captured by low-altitude UAV data compared to WV3 satellite
imagery that contains several pixel-mixing issues due to lower
spatial resolution. This could potentially lead to uneven NDVI
values generated from two different imaging platforms.

The performance of NDVI, NDRE and GNDVI retrieved from
WV3 and UAV platform was tested for detecting the effects of
rooting depth treatments. Statistically significant differences
in NDVI, NDRE and GNDVI were observed between rooting
depth treatments for all three dates (Table 2). These indices
were highly and constantly sensitive to 0.3 m, 0.45 m and 0.60
m treatments and these treatments can be easily distinguished
from other treatments with high confidence. NDVI and
GNDVI between 0.75 m, 0.90 m and control treatments were
statistically significant on all dates, whereas NDRE was only
indicated significant differences between these treatments on 22
July 2017.

4.2 Diurnal changes

Figure 9 shows a comparative view of the diurnal temperature
changes. The canopy temperature, which ranged from 15oC
to 55oC was extracted from the FLIR images acquired during

five flights that were conducted at approximately two-hour
intervals starting from 8:45 AM to 16:55 PM on 04 August
2017 (Figure 9). Canopy temperature gradually increases
from morning to noon and then decreases slightly by 16:55
PM. A distinct visible area of higher temperature (red spot)
is evident in a horizontal channel of the north region in the
field, where the rooting depth was restricted to 0.3 m depth
(Rondeaux et al., 1996, Sagan et al., 2019). This phenomenon
is more clearly observed from the NDVI map (Figure 10)
where lower NDVI values are concentrated on the regions
that have higher temperature. This indicates the impact of
water stress on the photosynthetic performance of the plant
because water stress created by limiting rooting depth can cause
stomata closure and accordingly lead to canopy temperature
increase (Maimaitijiang et al., 2017). Figure 11 exhibits
the corresponding NDRE (Normalized Difference Red Edge)
images generated from multispectral imagery captured by a
Parrot Sequoia sensor. NDRE showed better response of
water stress (i.e., vertical red channels in Figure 11) to the
different genotypes than NDVI. This can be attributed to NDRE
employing red-edge reflectance which is more sensitive to the
N content and Chl a + b (Cammarano et al., 2014) than red
reflectance and varied in different genotypes.

Figure 12 shows the impact of different rooting treatment on
canopy temperature, NDVI and NDRE over time-of-day. In
details, Figure 12(a) presents the influence of five different
rooting depth treatments on diurnal canopy temperature.
It is evident that the canopy temperature increased with
solar angle changes, or where more solar radiation was
absorbed. Additionally, the rooting depth treatment of 0.3 m
always exhibited higher temperature regardless of time-of-day
compared to the other treatments where less temperature
difference was found. The values of NDVI (Fig.12 (b))
and NDRE (Fig.12 (c)) shows relatively less fluctuation over
the time-of-day, while the rooting depth treatment of 0.3 m
generally produced the lowest values. Particularly, NDRE
values showed more obvious divergence between the 0.3 m
depth treatment and the other treatments. This result is
consistent with lower plant available soil moisture in with
restricted rooting depth leading to more water deficit stress in
plants.

Differences in canopy temperature between rooting depth
treatments were statistically significant throughout the day
(Table 3). A pairwise comparison of the treatments (all
the Tukeys HSD results not shown) revealed that the 0.3 m
treatment had significantly higher temperatures than any other
treatments at 8:45 am, 12:30 pm and 14:35 pm. The 0.45 m
treatment also showed higher canopy temperature compared to
other treatments; however, the differences were only significant
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Figure 9. Visualization of spatial and diurnal change of canopy temperature, which indicates stress development and
recovery from north to south of the field corresponding to from 0.3 m rooting depth to 0.45 m, 0.6 m, and 0.75 m rooting

depths divergence

Figure 10. Visualization of spatial and diurnal change of NDVI, which indicates stress development and recovery from
north to south of the field from 0.3 m rooting depth to 0.45 m, 0.6 m, and 0.75 m rooting depths divergence

Figure 11. Visualization of spatial and diurnal change of NDRE, which indicates stress development and recovery from
north to south of the field from 0.3 m rooting depth to 0.45 m, 0.6 m, and 0.75 m rooting depths divergence

Figure 12. Diurnal change of canopy temperature, NDVI and NDRE with different water treatment and time of the day

with 0.6 m and 0. 9 m treatments in the mid-morning (10:45
am), and with 0.75m and control in the late afternoon (16:55

pm). Average NDVI of each rooting depth was significantly
different in three UAV diurnal data collections at 10:45 am,
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Table 2. ANOVA results of different rooting depth treatments based temporal WV3 and UAV images.

Table 3. ANOVA results of different root depth treatments based on diurnal UAV images.

12:30 pm and 14:35 pm. Furthermore, the 0.3 m treatment had
significantly lower NDVI values compared to other treatments,
which is especially true for NDVI values at 12:30 pm. On the
contrary, the rooting depth treatments had no significant effect
on NDRE.

5. CONCLUSION

This paper presented a concept of temporal fusion within the
framework of virtual constellation of UAV and satellite remote
sensing data for crop phenotyping and early stress detection.
Crop responses to multi-day and diurnal water stress were
examined using VNIR and thermal images. Statistical methods
were used to quantify the difference in early stress development
among different rooting depth treatments.

UAV remote sensing is a critical tool for filling the temporal
gap in satellite data for crop monitoring. By capturing the
water stress progression, UAV integrated sensors combined
with satellite data may characterize the stress development
preemptively, enabling proactive field management and
irrigation scheduling for improved crop yields.

The thermal domain is highly effective in monitoring diurnal
changes in temperature induced by different rooting depth
treatments, whereas the multispectral indices were less affected
by the treatments. Furthermore, NDVI, NDRE, and GNDVI are
potential indices to be used from UAV or/and satellite platforms
for estimation of moderate to severe water stress.

Due to the differences in spatial and spectral resolutions,
discrepancies between UAV- and satellite-based platforms were
found for commonly used spectral indices (i.e., NDVI), which
might be attributed to soil exposure from pixel and atmospheric
effects pertinent to satellite data. This emphasizes the value of
UAV data in translating field-level crop models to satellite data
for accurate monitoring of agricultural landscapes at regional
or global scales. Future research should focus on UAV/satellite
virtual constellation for developing harmonized data at field and
satellite scales.
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