Weak liquid water path response in ship tracks

Tippett, Anna; Gryspeerdt, Edward; Manshausen, Peter; Stier, Philip; Smith, Tristan W. P.

The assessment of aerosol-cloud interactions remains a major source of uncertainty in understanding climate change, partly due to the difficulty in making accurate observations of aerosol impacts on clouds. Ships can release large numbers of aerosols that serve as cloud condensation nuclei, which can create artificially brightened clouds known as ship tracks. These aerosol emissions offer a "natural'', or "opportunistic'', experiment to explore aerosol effects on clouds while disentangling meteorological influences. Utilising ship positions and reanalysis winds, we predict ship track locations, collocating them with satellite data to depict the temporal evolution of cloud properties after an aerosol perturbation. Repeating our analysis for a null experiment does not necessarily recover zero signal as expected, but instead reveals subtleties between different null experiment methodologies. This study uncovers a systematic bias in prior ship track research, due to the assumption that background gradients will, on average, be linear. We correct for this bias, which is linked to the correlation between wind fields and cloud properties, to reveal the true ship track response.

We find that the liquid water path (LWP) response after an aerosol pertubation is weak on average, once this bias is corrected for. This has important implications for estimates of radiative forcings due to LWP adjustments, as previous responses in unstable cases were overestimated. A noticeable LWP response is only recovered in specific cases, such as marine stratocumulus clouds, where a positive LWP response is found in precipitating or clean clouds. This work highlights subtleties in the analysis of isolated opportunistic experiments, reconciling differences in the LWP response to aerosols reported in previous studies.



Tippett, Anna / Gryspeerdt, Edward / Manshausen, Peter / et al: Weak liquid water path response in ship tracks. 2024. Copernicus Publications.


12 Monate:

Grafik öffnen


Rechteinhaber: Anna Tippett et al.

Nutzung und Vervielfältigung: