Droplet collection efficiencies inferred from satellite retrievals constrain effective radiative forcing of aerosol–cloud interactions
Process-oriented observational constraints for the anthropogenic effective radiative forcing due to aerosol–cloud interactions (ERFaci) are highly desirable because the uncertainty associated with ERFaci poses a significant challenge to climate prediction. The contoured frequency by optical depth diagram (CFODD) analysis supports the evaluation of model representation of cloud liquid-to-rain conversion processes because the slope of a CFODD, generated from joint MODerate Resolution Imaging Spectroradiometer (MODIS)-CloudSat cloud retrievals, provides an estimate of cloud droplet collection efficiency in single-layer warm liquid clouds. Here, we present an updated CFODD analysis as an observational constraint on the ERFaci due to warm rain processes and apply it to the U.S. Department of Energy's Energy Exascale Earth System Model version 2 (E3SMv2). A series of sensitivity experiments shows that E3SMv2 droplet collection efficiencies and ERFaci are highly sensitive to autoconversion, i.e., the rate of mass transfer from cloud liquid to rain, yielding a strong correlation between the CFODD slope and the shortwave component of ERFaci (ERFaciinline-formulaSW; Pearson's inline-formula
Vorschau
Zitieren
Beall
Zugriffsstatistik
