Convective-gust nowcasting based on radar reflectivity and a deep learning algorithm

Xiao, Haixia; Wang, Yaqiang; Zheng, Yu; Zheng, Yuanyuan; Zhuang, Xiaoran; Wang, Hongyan; Gao, Mei

Convective wind gusts (CGs) are usually related to thunderstorms, and they may cause great structural damage and serious hazards, such as train derailment, service interruption, and building collapse. Due to the small-scale and nonstationary nature of CGs, reliable CG nowcasting with high spatial and temporal resolutions has remained unattainable. In this study, a novel nowcasting model based on deep learning – namely, CGsNet – is developed for 0–2 h lead times of quantitative CG nowcasting, achieving minute–kilometer-level forecasts. CGsNet is a physics-constrained model established by training on large corpora of average surface wind speed (ASWS) and radar observations; it can produce realistic and spatiotemporally consistent ASWS predictions in CG events. By combining the gust factor (1.77, the ratio of the observed peak wind gust speed (PWGS) to the ASWS) with the ASWS predictions, the PWGS forecasts are estimated with a spatial resolution of 0.01inline-formulainline-formula× 0.01inline-formula and a 6 min temporal resolution. CGsNet is shown to be effective, and it has an essential advantage in learning the spatiotemporal features of CGs. In addition, quantitative evaluation experiments indicate that CGsNet exhibits higher generalization performance for CGs than the traditional nowcasting method based on numerical weather prediction models. CG-nowcasting technology can be applied to provide real-time quantitative CG forecasts.



Xiao, Haixia / Wang, Yaqiang / Zheng, Yu / et al: Convective-gust nowcasting based on radar reflectivity and a deep learning algorithm. 2023. Copernicus Publications.


12 Monate:

Grafik öffnen


Rechteinhaber: Haixia Xiao et al.

Nutzung und Vervielfältigung: