Chemical identification of new particle formation and growth precursors through positive matrix factorization of ambient ion measurements
In the lower troposphere, rapid collisions between ions and trace gases result in the transfer of positive charge to the highest proton affinity species and negative charge to the lowest proton affinity species. Measurements of the chemical composition of ambient ions thus provide direct insight into the most acidic and basic trace gases and their ion–molecule clusters – compounds thought to be important for new particle formation and growth. We deployed an atmospheric pressure interface time-of-flight mass spectrometer (APi-ToF) to measure ambient ion chemical composition during the 2016 Holistic Interactions of Shallow Clouds, Aerosols, and Land Ecosystems (HI-SCALE) campaign at the United States Department of Energy Atmospheric Radiation Measurement facility in the Southern Great Plains (SGP), an agricultural region. Cations and anions were measured for alternating periods of inline-formula∼ 24 h over 1 month. We use binned positive matrix factorization (binPMF) and generalized Kendrick analysis (GKA) to obtain information about the chemical formulas and temporal variation in ionic composition without the need for averaging over a long timescale or a priori high-resolution peak fitting. Negative ions consist of strong acids including sulfuric and nitric acid, organosulfates, and clusters of NOinline-formula
Vorschau
Zitieren
Katz
Zugriffsstatistik
