Cosmogenic nuclide exposure age scatter records glacial history and processes in McMurdo Sound, Antarctica

Christ, Andrew J.; Bierman, Paul R.; Lamp, Jennifer L.; Schaefer, Joerg M.; Winckler, Gisela

The preservation of cosmogenic nuclides that accumulated during periods of prior exposure but were not subsequently removed by erosion or radioactive decay complicates interpretation of exposure, erosion, and burial ages used for a variety of geomorphological applications. In glacial settings, cold-based, non-erosive glacier ice may fail to remove inventories of inherited nuclides in glacially transported material. As a result, individual exposure ages can vary widely across a single landform (e.g., moraine) and exceed the expected or true depositional age. The surface processes that contribute to inheritance remain poorly understood, thus limiting interpretations of cosmogenic nuclide datasets in glacial environments. Here, we present a compilation of new and previously published exposure ages of multiple lithologies in local Last Glacial Maximum (LGM) and older Pleistocene glacial sediments in the McMurdo Sound region of Antarctica. Unlike most Antarctic exposure chronologies, we are able to compare exposure ages of local LGM sediments directly against an independent radiocarbon chronology of fossil algae from the same sedimentary unit that brackets the age of the local LGM between 12.3 and 19.6 inline-formulaka. Cosmogenic exposure ages vary by lithology, suggesting that bedrock source and surface processes prior to, during, and after glacial entrainment explain scatter. inline-formula10Be exposure ages of quartz in granite, sourced from the base of the stratigraphic section in the Transantarctic Mountains, are scattered but young, suggesting that clasts entrained by sub-glacial plucking can generate reasonable apparent exposure ages. inline-formula3He exposure ages of pyroxene in Ferrar Dolerite, which crops out above outlet glaciers in the Transantarctic Mountains, are older, which suggests that clasts initially exposed on cliff faces and glacially entrained by rock fall carry inherited nuclides. inline-formula3He exposure ages of olivine in basalt from local volcanic bedrock in the McMurdo Sound region contain many excessively old ages but also have a bimodal distribution with peak probabilities that slightly pre-date and post-date the local LGM; this suggests that glacial clasts from local bedrock record local landscape exposure. With the magnitude and geological processes contributing to age scatter in mind, we examine exposure ages of older glacial sediments deposited by the most extensive ice sheet to inundate McMurdo Sound during the Pleistocene. These results underscore how surface processes operating in the Transantarctic Mountains are expressed in the cosmogenic nuclide inventories held in Antarctic glacial sediments.

Zitieren

Zitierform:

Christ, Andrew J. / Bierman, Paul R. / Lamp, Jennifer L. / et al: Cosmogenic nuclide exposure age scatter records glacial history and processes in McMurdo Sound, Antarctica. 2021. Copernicus Publications.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Rechte

Rechteinhaber: Andrew J. Christ et al.

Nutzung und Vervielfältigung:

Export