POSSIBILITIES OF SPATIAL CORRELATION OF 3D MODELS IN AN ARCHAEOLOGICAL AUGMENTED REALITY APPLICATION

Kaimaris, D.; Roustanis, T.; Klimantakis, K.; Karolos, I. A.; Patias, P.

The use of Augmented Reality (AR) technology is widespread in countless archaeological sites and a variety of applications. Archaeological excavations lead to archaeological finds, some of which are transported for preservation and then for exhibition in museums (jewelry, vases, etc.), while another part of them is documented in detail and remains in situ (eg building walls), roads, grave covers, etc.). However, after the registration of the archaeological finds, it is impossible to observe them. As part of our research project, we will develop for the first time AR methodology and procedures for the observation of covered archaeological finds on mobile devices (smart phones, tablets), which were registered after their documentation. AR technology in recent years has seen great growth in terms of implementation platforms and available software, as well as the tools developed to support it. These tools either make their appearance in the form of frameworks, extending the capabilities of an existing engine, or function as independent services. At the same time, progress has been made in the field of sensors of mobile devices, which makes the compatibility of hardware and software another issue to be researched. As part of the development of the above application for mobile devices, an evaluation is made of the most widespread AR Frameworks that support the Unity3d Game Engine and the compatibility / interoperability with the sensors of different categories of mobile devices. The frameworks were checked and evaluated for placement and tracking of the positions of the 3D covered objects. In this paper also, methodologies and techniques used in space detection and tracking are presented and evaluated.

Zitieren

Zitierform:

Kaimaris, D. / Roustanis, T. / Klimantakis, K. / et al: POSSIBILITIES OF SPATIAL CORRELATION OF 3D MODELS IN AN ARCHAEOLOGICAL AUGMENTED REALITY APPLICATION. 2021. Copernicus Publications.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Rechte

Rechteinhaber: D. Kaimaris et al.

Nutzung und Vervielfältigung:

Export