Comparing modified substrate-induced respiration with selective inhibition (SIRIN) and N 2O isotope approaches to estimate fungal contribution to denitrification in three arable soils under anoxic conditions

Rohe, Lena; Anderson, Traute-Heidi; Flessa, Heinz; Goeske, Anette; Lewicka-Szczebak, Dominika; Wrage-Mönnig, Nicole; Well, Reinhard

The coexistence of many inline-formulaN2O production pathways in soil hampers differentiation of microbial pathways. The question of whether fungi are significant contributors to soil emissions of the greenhouse gas nitrous oxide (inline-formulaN2O) from denitrification has not yet been resolved. Here, three approaches to independently investigate the fungal fraction contributing to inline-formulaN2O from denitrification were used simultaneously for, as far as we know, the first time (modified substrate-induced respiration with selective inhibition (SIRIN) approach and two isotopic approaches, i.e. end-member mixing approach (IEM) using the inline-formula15N site preference of inline-formulaN2O produced (inline-formula M8inlinescrollmathml chem normal SP normal N normal 2 normal O 33pt15ptsvg-formulamathimgf08b96753db2216d06e87dc70dc009c1 bg-18-4629-2021-ie00001.svg33pt15ptbg-18-4629-2021-ie00001.png ) and the SP/inline-formulaδ18O mapping approach (SP/inline-formulaδ18O Map)). This enabled a comparison of methods and a quantification of the importance of fungal denitrification in soil.

Three soils were incubated in four treatments of the SIRIN approach under anaerobic conditions to promote denitrification. While one treatment without microbial inhibition served as a control, the other three treatments were amended with inhibitors to selectively inhibit bacterial, fungal, or bacterial and fungal growth. These treatments were performed in three variants. In one variant, the inline-formula15N tracer technique was used to estimate the effect of inline-formulaN2O reduction on the inline-formulaN2O produced, while two other variants were performed under natural isotopic conditions with and without acetylene.

All three approaches revealed a small contribution of fungal denitrification to inline-formulaN2O fluxes (inline-formulafFD) under anaerobic conditions in the soils tested. Quantifying the fungal fraction with modified SIRIN was not successful due to large amounts of uninhibited inline-formulaN2O production. In only one soil could inline-formulafFD be estimated using modified SIRIN, and this resulted in 28 inline-formula± 9 %, which was possibly an overestimation, since results obtained by IEM and SP/inline-formulaδ18O Map for this soil resulted in inline-formulafFD of below 15 % and 20 %, respectively. As a consequence of the unsuccessful SIRIN approach, estimation of fungal inline-formula M21inlinescrollmathml chem normal SP normal N normal 2 normal O 33pt15ptsvg-formulamathimg634a5d3b3d6eb040b50398ae783f99b7 bg-18-4629-2021-ie00002.svg33pt15ptbg-18-4629-2021-ie00002.png values was impossible.

While all successful methods consistently suggested a small or missing fungal contribution, further studies with stimulated fungal inline-formulaN2O fluxes by adding fungal C substrates and an improved modified SIRIN approach, including alternative inhibitors, are needed to better cross-validate the methods.

Zitieren

Zitierform:

Rohe, Lena / Anderson, Traute-Heidi / Flessa, Heinz / et al: Comparing modified substrate-induced respiration with selective inhibition (SIRIN) and N2O isotope approaches to estimate fungal contribution to denitrification in three arable soils under anoxic conditions. 2021. Copernicus Publications.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Rechte

Rechteinhaber: Lena Rohe et al.

Nutzung und Vervielfältigung:

Export