Jarzynski equality and Crooks relation for local models of air–sea interaction
We show that the most prominent of the work theorems, the Jarzynski equality and the Crooks relation, can be applied to the momentum transfer at the air–sea interface using a hierarchy of local models. In the more idealized models, with and without a Coriolis force, the variability is provided from Gaussian white noise which modifies the shear between the atmosphere and the ocean. The dynamics is Gaussian, and the Jarzynski equality and Crooks relation can be obtained analytically solving stochastic differential equations. The more involved model consists of interacting atmospheric and oceanic boundary layers, where only the dependence on the vertical direction is resolved, the turbulence is modeled through standard turbulent models and the stochasticity comes from a randomized drag coefficient. It is integrated numerically and can give rise to a non-Gaussian dynamics. Also in this case the Jarzynski equality allows for calculating a dynamic beta inline-formulaβD of the turbulent fluctuations (the equivalent of the thermodynamic beta inline-formula
Vorschau
Zitieren
Wirth
Zugriffsstatistik
