Rock alteration at the post-Variscan nonconformity: implications for Carboniferous–Permian surface weathering versus burial diagenesis and paleoclimate evaluation

Liang, Fei; Niu, Jun; Linsel, Adrian; Hinderer, Matthias; Scheuvens, Dirk; Petschick, Rainer

A nonconformity refers to a hiatal surface located between metamorphic or igneous rocks and overlying sedimentary or volcanic rocks. These surfaces are key features with respect to understanding the relations among climate, lithosphere and tectonic movements during ancient times. In this study, the petrological, mineralogical and geochemical characteristics of Variscan basement rock as well as its overlying Permian volcano-sedimentary succession from a drill core in the Sprendlinger Horst, Germany, are analyzed by means of polarization microscopy, and environmental scanning electron microscope, X-Ray diffraction, X-ray fluorescence and inductively coupled plasma mass spectrometry analyses. In the gabbroic diorite of the basement, the intensity of micro- and macro-fractures increases towards the top, indicating an intense physical weathering. The overlying Permian volcanic rock is a basaltic andesite that shows less intense physical weathering compared with the gabbroic diorite. In both segments, secondary minerals are dominated by illite and a mixed-layer phase of illite and smectite (I–S). The corrected chemical index of alteration (CIA) and the plagioclase index of alteration (PIA) indicate an intermediate to unweathered degree in the gabbroic diorite and an extreme to unweathered degree in the basaltic andesite. The inline-formulaτ values for both basaltic andesite and gabbroic diorite indicate an abnormal enrichment of K, Rb and Cs that cannot be observed in the overlying Permian sedimentary rocks. Accompanying minerals such as adularia suggest subsequent overprint by (K-rich) fluids during burial diagenesis which promoted the conversion from smectite to illite. The overall order of element depletion in both basaltic andesite and gabbroic diorite during the weathering process is as follows: large-ion lithophile elements (LILEs) inline-formula> rare earth elements (REEs) inline-formula> high-field-strength elements (HFSEs). Concerning the REEs, heavy rare earth elements (HREEs) are less depleted than light rare earth elements (LREEs). Our study shows that features of supergene physical and chemical paleo-weathering are well conserved at the post-Variscan nonconformity despite hypogene alteration. Both can be distinguished by characteristic minerals and geochemical indices. Based on these results, a new workflow to eliminate distractions for paleoclimate evaluation and evolution is developed.

Zitieren

Zitierform:

Liang, Fei / Niu, Jun / Linsel, Adrian / et al: Rock alteration at the post-Variscan nonconformity: implications for Carboniferous–Permian surface weathering versus burial diagenesis and paleoclimate evaluation. 2021. Copernicus Publications.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Rechte

Rechteinhaber: Fei Liang et al.

Nutzung und Vervielfältigung:

Export