Mapping the drivers of formaldehyde (HCHO) variability from 2015 to 2019 over eastern China: insights from Fourier transform infrared observation and GEOS-Chem model simulation

Sun, Youwen; Yin, Hao; Liu, Cheng; Zhang, Lin; Cheng, Yuan; Palm, Mathias; Notholt, Justus; Lu, Xiao; Vigouroux, Corinne; Zheng, Bo; Wang, Wei; Jones, Nicholas; Shan, Changong; Qin, Min; Tian, Yuan; Hu, Qihou; Meng, Fanhao; Liu, Jianguo

The major air pollutant emissions have decreased, and the overall air quality has substantially improved across China in recent years as a consequence of active clean air policies for mitigating severe air pollution problems. As key precursors of formaldehyde (HCHO) and ozone (Oinline-formula3), the volatile organic compounds (VOCs) in China are still increasing due to the lack of mitigation measures for VOCs. In this study, we investigated the drivers of HCHO variability from 2015 to 2019 over Hefei, eastern China, by using ground-based high-resolution Fourier transform infrared (FTIR) spectroscopy and GEOS-Chem model simulation. Seasonal and interannual variabilities of HCHO over Hefei were analyzed and hydroxyl (OH) radical production rates from HCHO photolysis were evaluated. The relative contributions of emitted and photochemical sources to the observed HCHO were analyzed by using ground-level carbon monoxide (CO) and Oinline-formulax (Oinline-formula3inline-formula+ nitrogen oxide (NOinline-formula2)) as tracers for emitted and photochemical HCHO, respectively. Contributions of emission sources from various categories and geographical regions to the observed HCHOpage6366 summertime enhancements were determined by using a series of GEOS-Chem sensitivity simulations. The column-averaged dry air mole fractions of HCHO (inline-formulaXHCHO) reached a maximum monthly mean value of 1.1 inline-formula± 0.27 ppbv in July and a minimum monthly mean value of 0.4 inline-formula± 0.11 ppbv in January. The inline-formulaXHCHO time series from 2015 to 2019 over Hefei showed a positive change rate of 2.38 inline-formula± 0.71 % per year. The photochemical HCHO is the dominant source of atmospheric HCHO over Hefei for most of the year (68.1 %). In the studied years, the HCHO photolysis was an important source of OH radicals over Hefei during all sunlight hours of both summer and winter days. The oxidations of both methane (CHinline-formula4) and nonmethane VOCs (NMVOCs) dominate the HCHO production over Hefei and constitute the main driver of its summertime enhancements. The NMVOC-related HCHO summertime enhancements were dominated by the emissions within eastern China. The observed increasing change rate of HCHO from 2015 to 2019 over Hefei was attributed to the increase in photochemical HCHO resulting from increasing change rates of both CHinline-formula4 and NMVOC oxidations, which overwhelmed the decrease in emitted HCHO. This study provides a valuable evaluation of recent VOC emissions and regional photochemical capacity in China. In addition, understanding the sources of HCHO is a necessary step for tackling air pollution in eastern China and mitigating the emissions of pollutants.



Sun, Youwen / Yin, Hao / Liu, Cheng / et al: Mapping the drivers of formaldehyde (HCHO) variability from 2015 to 2019 over eastern China: insights from Fourier transform infrared observation and GEOS-Chem model simulation. 2021. Copernicus Publications.


12 Monate:

Grafik öffnen


Rechteinhaber: Youwen Sun et al.

Nutzung und Vervielfältigung: