Design and implementation of the detection software of a wireless microseismic acquisition station based on the Android platform

Zhang, Qimao; Qiao, Shuaiqing; Zhang, Qisheng; Liu, Shiyang

New energy acquisition devices are urgently required to address the increasing global energy consumption and increasing difficulty of energy exploitation. Devices for seismic exploration appear to be small in size, wireless and rapidly becoming more intelligent; hence, a traditional operating platform can no longer satisfy the demand of portable exploration device usage. This study investigates and develops hardware for a wireless microseismic acquisition station and then uses this hardware as a platform to address the distribution of wireless microseismic acquisition stations and deliver monitoring software based on the Android platform, which is portable, popular and has a large number of users. In large-scale field constructions, software can provide operators with visualised station layouts throughout the process, including positioning, ranging, angle measuring and network monitoring. It also offers a real-time network for monitoring small- and medium-sized microseismic acquisition station arrays under construction as well as other functions, such as intelligent control and real-time data monitoring of the status of the acquisition station. A drainage blast monitoring test is conducted on the system, showing positively monitored data and accurate results in the inverse operation. Moreover, the software and hardware are proven to be highly stable and portable through a post-construction test, which can help enhance the field construction efficiency.

Zitieren

Zitierform:

Zhang, Qimao / Qiao, Shuaiqing / Zhang, Qisheng / et al: Design and implementation of the detection software of a wireless microseismic acquisition station based on the Android platform. 2021. Copernicus Publications.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Rechte

Rechteinhaber: Qimao Zhang et al.

Nutzung und Vervielfältigung:

Export