SIMRES-TV: NOISE AND RESIDUAL SIMILARITY FOR PARAMETER ESTIMATION IN TOTAL VARIATION

Prasath, V. B. S.; Hien, N. N.; Thanh, D. N. H.; Dvoenko, S.

Image restoration with regularization models is very popular in the image processing literature. Total variation (TV) is one of the important edge preserving regularization models used, however, to obtain optimal restoration results the regularization parameter needs to be set appropriately. We propose here a new parameter estimation approach for total variation based image restoration. By utilizing known noise levels we compute the regularization parameter by reducing the similarity between residual and noise variances. We use the split Bregman algorithm for the total variation along with this automatic parameter estimation step to obtain a very fast restoration scheme. Experimental results indicate the proposed parameter estimation obtained better denoised images and videos in terms of PSNR and SSIM measures and the computational overload is less compared with other approaches.

Zitieren

Zitierform:

Prasath, V. B. S. / Hien, N. N. / Thanh, D. N. H. / et al: SIMRES-TV: NOISE AND RESIDUAL SIMILARITY FOR PARAMETER ESTIMATION IN TOTAL VARIATION. 2021. Copernicus Publications.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Rechte

Rechteinhaber: V. B. S. Prasath et al.

Nutzung und Vervielfältigung:

Export