Detection of the melting level with polarimetric weather radar

Sanchez-Rivas, Daniel; Rico-Ramirez, Miguel A.

Accurate estimation of the melting level (ML) is essential in radar rainfall estimation to mitigate the bright band enhancement, classify hydrometeors, correct for rain attenuation and calibrate radar measurements. This paper presents a novel and robust ML-detection algorithm based on either vertical profiles (VPs) or quasi-vertical profiles (QVPs) built from operational polarimetric weather radar scans. The algorithm depends only on data collected by the radar itself, and it is based on the combination of several polarimetric radar measurements to generate an enhanced profile with strong gradients related to the melting layer. The algorithm is applied to 1 year of rainfall events that occurred over southeast England, and the results were validated using radiosonde data. After evaluating all possible combinations of polarimetric radar measurements, the algorithm achieves the best ML detection when combining VPs of inline-formulaZH, inline-formulaρHV and the gradient of the velocity (inline-formulagradV), whereas, for QVPs, combining profiles of inline-formulaZH, inline-formulaρHV and inline-formulaZDR produces the best results, regardless of the type of rain event. The root mean square error in the ML detection compared to radiosonde data is inline-formula∼200 m when using VPs and inline-formula∼250 m when using QVPs.

Zitieren

Zitierform:

Sanchez-Rivas, Daniel / Rico-Ramirez, Miguel A.: Detection of the melting level with polarimetric weather radar. 2021. Copernicus Publications.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Rechte

Rechteinhaber: Daniel Sanchez-Rivas

Nutzung und Vervielfältigung:

Export