Secular change in atmospheric Ar∕N 2 and its implications for ocean heat uptake and Brewer–Dobson circulation

Ishidoya, Shigeyuki; Sugawara, Satoshi; Tohjima, Yasunori; Goto, Daisuke; Ishijima, Kentaro; Niwa, Yosuke; Aoki, Nobuyuki; Murayama, Shohei

Systematic measurements of the atmospheric inline-formulaAr∕N2 ratio have been made at ground-based stations in Japan and Antarctica since 2012. Clear seasonal cycles of the inline-formulaAr∕N2 ratio with summertime maxima were found at middle- to high-latitude stations, with seasonal amplitudes increasing with increasing latitude. Eight years of the observed inline-formulaAr∕N2 ratio at Tsukuba (TKB) and Hateruma (HAT), Japan, showed interannual variations in phase with the observed variations in the global ocean heat content (OHC). We calculated secularly increasing trends of 0.75 inline-formula± 0.30 and 0.89 inline-formula± 0.60 per meg per year from the inline-formulaAr∕N2 ratio observed at TKB and HAT, respectively, although these trend values are influenced by large interannual variations. In order to examine the possibility of the secular trend in the surface inline-formulaAr∕N2 ratio being modified significantly by the gravitational separation in the stratosphere, two-dimensional model simulations were carried out by arbitrarily modifying the mass stream function in the model to simulate either a weakening or an enhancement of the Brewer–Dobson circulation (BDC). The secular trend of the inline-formulaAr∕N2 ratio at TKB, corrected for gravitational separation under the assumption of weakening (enhancement) of BDC simulated by the 2-D model, was 0.60 inline-formula± 0.30 (0.88 inline-formula± 0.30) per meg per year. By using a conversion factor of 3.5 inline-formula× 10inline-formula−23 per meg per joule by assuming a one-box ocean with a temperature of 3.5 inline-formulaC, average OHC increase rates of 17.1 inline-formula± 8.6 ZJ yrinline-formula−1 and 25.1 inline-formula± 8.6 ZJ yrinline-formula−1 for the period 2012–2019 were estimated from the corrected secular trends of the inline-formulaAr∕N2 ratio for the weakened- and enhanced-BDC conditions, respectively. Both OHC increase rates from the uncorrected- and weakened-BDC secular trends of the inline-formulaAr∕N2 ratio are consistent with 12.2 inline-formula± 1.2 ZJ yrinline-formula−1 reported by ocean temperature measurements, while that from the enhanced-BDC is outside of the range of the uncertainties. Although the effect of the actual atmospheric circulation on the inline-formulaAr∕N2 ratio is still unclear and longer-term observations are needed to reduce uncertainty of the secular trend of the surface inline-formulaAr∕N2 ratio, the analytical results obtained in the present study imply that the surface inline-formulaAr∕N2 ratio is an important tracer for detecting spatiotemporally integrated changes in OHC and BDC.



Ishidoya, Shigeyuki / Sugawara, Satoshi / Tohjima, Yasunori / et al: Secular change in atmospheric Ar∕N2 and its implications for ocean heat uptake and Brewer–Dobson circulation. 2021. Copernicus Publications.


12 Monate:

Grafik öffnen


Rechteinhaber: Shigeyuki Ishidoya et al.

Nutzung und Vervielfältigung: