Optimization of the sulfate aerosol hygroscopicity parameter in WRF-Chem

Kim, Ah-Hyun; Yum, Seong Soo; Chang, Dong Yeong; Park, Minsu

A new sulfate aerosol hygroscopicity parameter (inline-formula M1inlinescrollmathml italic κ chem normal SO normal 4 23pt12ptsvg-formulamathimg622dc9929597c20909d24ffc7eafcadd gmd-14-259-2021-ie00001.svg23pt12ptgmd-14-259-2021-ie00001.png ) parameterization is suggested that is capable of considering the two major sulfate aerosols, inline-formulaH2SO4 and inline-formula(NH4)2SO4, using the molar ratio of ammonium to sulfate (inline-formulaR). An alternative inline-formula M5inlinescrollmathml italic κ chem normal SO normal 4 23pt12ptsvg-formulamathimg350642aa3ea7fb10e1a963dc56ac717d gmd-14-259-2021-ie00002.svg23pt12ptgmd-14-259-2021-ie00002.png parameterization method is also suggested that utilizes typical geographical distribution patterns of sulfate and ammonium, which can be used when ammonium data are not available for model calculation. Using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem), the impacts of different inline-formula M6inlinescrollmathml italic κ chem normal SO normal 4 23pt12ptsvg-formulamathimg0f3761c00885f50ffc65c527b771c5c4 gmd-14-259-2021-ie00003.svg23pt12ptgmd-14-259-2021-ie00003.png parameterizations on cloud microphysical properties and cloud radiative effects in East Asia are examined. Comparisons with the observational data obtained from an aircraft field campaign suggest that the new inline-formula M7inlinescrollmathml italic κ chem normal SO normal 4 23pt12ptsvg-formulamathimge2f3251b358b44a6f8d3a15ba0086037 gmd-14-259-2021-ie00004.svg23pt12ptgmd-14-259-2021-ie00004.png parameterizations simulate more reliable aerosol and cloud condensation nuclei concentrations, especially over the sea in East Asia, than the original inline-formula M8inlinescrollmathml italic κ chem normal SO normal 4 23pt12ptsvg-formulamathimgd9220de5bf940efc6e3431cf9a6062be gmd-14-259-2021-ie00005.svg23pt12ptgmd-14-259-2021-ie00005.png parameterization in WRF-Chem that assumes sulfate aerosols as inline-formula(NH4)2SO4 only. With the new inline-formula M10inlinescrollmathml italic κ chem normal SO normal 4 23pt12ptsvg-formulamathimg258510d1afdd1d0b6104fa69eb87bb78 gmd-14-259-2021-ie00006.svg23pt12ptgmd-14-259-2021-ie00006.png parameterizations, the simulated cloud microphysical properties and precipitation became significantly different, resulting in a greater cloud albedo effect of about inline-formula−1.5inline-formulaW m−2 in East Asia than that with the original inline-formula M13inlinescrollmathml italic κ chem normal SO normal 4 23pt12ptsvg-formulamathimgd99655f1c2dd3e716efadbc1d2115c45 gmd-14-259-2021-ie00007.svg23pt12ptgmd-14-259-2021-ie00007.png parameterization. The new inline-formula M14inlinescrollmathml italic κ chem normal SO normal 4 23pt12ptsvg-formulamathimg49d4a39662b4c1417d54bf9e92b95264 gmd-14-259-2021-ie00008.svg23pt12ptgmd-14-259-2021-ie00008.png parameterizations are simple and readily applicable to numerical studies investigating the impact of sulfate aerosols in aerosol–cloud interactions without additional computational expense.



Kim, Ah-Hyun / Yum, Seong Soo / Chang, Dong Yeong / et al: Optimization of the sulfate aerosol hygroscopicity parameter in WRF-Chem. 2021. Copernicus Publications.


12 Monate:

Grafik öffnen


Rechteinhaber: Ah-Hyun Kim et al.

Nutzung und Vervielfältigung: