Impact of precipitation and increasing temperatures on drought trends in eastern Africa
In eastern Africa droughts can cause crop failure and lead to food insecurity. With increasing temperatures, there is an a priori assumption that droughts are becoming more severe. However, the link between droughts and climate change is not sufficiently understood. Here we investigate trends in long-term agricultural drought and the influence of increasing temperatures and precipitation deficits. Using a combination of models and observational datasets, we studied trends, spanning the period from 1900 (to approximate pre-industrial conditions) to 2018, for six regions in eastern Africa in four drought-related annually averaged variables: soil moisture, precipitation, temperature, and evaporative demand (inline-formulaE0). In standardized soil moisture data, we found no discernible trends. The strongest influence on soil moisture variability was from precipitation, especially in the drier or water-limited study regions; temperature and inline-formulaE0 did not demonstrate strong relations to soil moisture. However, the error margins on precipitation trend estimates are large and no clear trend is evident, whereas significant positive trends were observed in local temperatures. The trends in inline-formulaE0 are predominantly positive, but we do not find strong relations between inline-formulaE0 and soil moisture trends. Nevertheless, the inline-formulaE0 trend results can still be of interest for irrigation purposes because it is inline-formulaE0 that determines the maximum evaporation rate. We conclude that until now the impact of increasing local temperatures on agricultural drought in eastern Africa is limited and we recommend that any soil moisture analysis be supplemented by an analysis of precipitation deficit.
Vorschau
Zitieren
Kew
Zugriffsstatistik
