The potential of increasing man-made air pollution to reduce rainfall over southern West Africa

Pante, Gregor; Knippertz, Peter; Fink, Andreas H.; Kniffka, Anke

Southern West Africa has one of the fastest-growing populations worldwide. This has led to a higher water demand and lower air quality. Over the last 3 decades, most of the region has experienced decreasing rainfall during the little dry season (LDS; mid-July to end of August) and more recently also during the second rainy season (SRS; September–October), while trends during the first rainy season (FRS; mid-May to mid-July) are insignificant. Here we analyse spatio-temporal variations in precipitation, aerosol, radiation, cloud, and visibility observations from surface stations and from space to find indications for a potential contribution of anthropogenic air pollution to these rainfall trends. The proposed mechanism is that the dimming of incoming solar radiation by aerosol extinction contributes to reducing vertical instability and thus convective precipitation. To separate a potential aerosol influence from large-scale climatic drivers, a multilinear-regression model based on sea-surface temperature (SST) indices is used. During both LDS and SRS, weakly statistically significant but accelerating negative rainfall trends unrelated to known climatic factors are found. These are accompanied by a strong increase in pollution over the upstream tropical Atlantic caused by fire aerosol from Central Africa, particularly during the LDS. Over southern West Africa, no long-term aerosol records are available, inhibiting a direct quantification of the local man-made effect. However, significant decreases in horizontal visibility and incoming surface solar radiation are strong indicators for an increasing aerosol burden, in line with the hypothesized pollution impact on rainfall. The radiation trend is further enhanced by an increase in low-level cloudiness. The large spatial extent of potentially aerosol-related trends during the LDS is consistent with the stronger monsoon flow and less wet deposition during this season. Negligible aerosol impacts during the FRS are likely due to the high degree of convective organization, which makes rainfall less sensitive to surface radiation. The overall coherent picture and the accelerating trends – some of which are concealed by SST effects – should alarm policymakers in West Africa to prevent a further increase in air pollution as this could endanger water supply and food and energy production for a large and growing population.



Pante, Gregor / Knippertz, Peter / Fink, Andreas H. / et al: The potential of increasing man-made air pollution to reduce rainfall over southern West Africa. 2021. Copernicus Publications.


12 Monate:

Grafik öffnen


Rechteinhaber: Gregor Pante et al.

Nutzung und Vervielfältigung: