SEGNET-BASED EXTRACTION OF WETLAND VEGETATION INFORMATION FROM UAV IMAGES

Tang, T. Y.; Fu, B. L.; Lou, P. Q.; Bi, L.

This study takes Guangxi Huixian National Wetland Park as the research area, and uses the UAV image and ground measured tag data as the data source. The SegNet model is used to extract the wetland vegetation information in the study area, further verification multiple classification SegNet model and fusion multiple SegNet model of single/double classification precision of the two ways of extracting karst wetland vegetation information. The experimental results show that the Kappa coefficient of the multi-segmented SegNet model is 0.68, while the multi-class SegNet model has a classification effect of 0.59. The classification effect of the karst wetland vegetation information extracted by multiple single/double-class SegNet models is more than the multi-classification. The SegNet model has high precision.

Zitieren

Zitierform:

Tang, T. Y. / Fu, B. L. / Lou, P. Q. / et al: SEGNET-BASED EXTRACTION OF WETLAND VEGETATION INFORMATION FROM UAV IMAGES. 2020. Copernicus Publications.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Rechte

Rechteinhaber: T. Y. Tang et al.

Nutzung und Vervielfältigung:

Export