DETECTION AND CLASSIFICATION OF BRIDGE CROSSING EVENTS WITH GROUND-BASED INTERFEROMETRIC RADAR DATA AND MACHINE LEARNING APPROACHES

Arnold, M.; Keller, S.

In this paper, we investigate the potential of detecting and classifying vehicle crossings (events) on bridges with ground-based interferometric radar (GBR) data and machine learning (ML) approaches. The GBR data and image data recorded by a unmanned aerial vehicle, used as ground truth, have been measured during field campaigns at three bridges in Germany non-invasively. Since traffic load of the bridges has taken place during the measurement, we have been able to monitor the bridge dynamics in terms of a vertical displacement. We introduce a methodological approach with three steps including preprocessing of the GBR data, feature extraction and well-chosen ML models. The impact of the preprocessing approaches as well as of the selected features on the classification results is evaluated. In case of the distinction between event and no event, adaptive boosting with low-pass filtering achieves the best classification results. Regarding the distinction between different class types of vehicles, random forest performs best utilising low-pass filtered GBR data. Our results reveal the potential of the GBR data combined with the respective methodological approach to detect and to classify events under real-world conditions. In conclusion, the preliminary results of this paper provide a basis for further improvements such as advanced preprocessing of the GBR data to extracted additional features which then can be used as input for the ML models.

Zitieren

Zitierform:

Arnold, M. / Keller, S.: DETECTION AND CLASSIFICATION OF BRIDGE CROSSING EVENTS WITH GROUND-BASED INTERFEROMETRIC RADAR DATA AND MACHINE LEARNING APPROACHES. 2020. Copernicus Publications.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Rechte

Rechteinhaber: M. Arnold

Nutzung und Vervielfältigung:

Export