A NOVEL RPC BIAS MODEL FOR IMPROVING THE POSITIONING ACCURACY OF SATELLITE IMAGES

Dong, Y.; Lei, R.; Fan, D.; Gu, L.; Ji, S.

High-precision satellite image geolocation is the basis for advanced processing of satellite image data. Aiming at the optimization of the satellite image positioning accuracy based on rational polynomial coefficients (RPC), we propose an RPC image-space bias model that combines object-space information. Based on a comprehensive analysis of the full-link error of the satellite image geometric imaging process, the real object coordinates are introduced into the RPC correction to make the bias model better fit the actual error. Experiments were performed using several image datasets from the Chinese satellite TianHui-1 (TH-1) and compared with the traditional RPC bias model. The results show that our model has strong robustness and can better correct image positioning errors. Compared with traditional bias models, it can improve the accuracy of plane positioning by approximately 1 pixel.

Zitieren

Zitierform:

Dong, Y. / Lei, R. / Fan, D. / et al: A NOVEL RPC BIAS MODEL FOR IMPROVING THE POSITIONING ACCURACY OF SATELLITE IMAGES. 2020. Copernicus Publications.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Rechte

Rechteinhaber: Y. Dong et al.

Nutzung und Vervielfältigung:

Export