A BOUNDARY-ENHANCED SUPERVOXEL METHOD FOR EXTRACTION OF ROAD EDGES IN MLS POINT CLOUDS

Sha, Z.; Chen, Y.; Li, W.; Wang, C.; Nurunnabi, A.; Li, J.

Road extraction plays a significant role in production of high definition maps (HD maps). This paper presents a novel boundary-enhanced supervoxel segmentation method for extracting road edge contours from MLS point clouds. The proposed method first leverages normal feature judgment to obtain 3D point clouds global geometric information, then clusters points according to an existing method with global geometric information to enhance the boundaries. Finally, it utilizes the neighbor spatial distance metric to extract the contours and drop out existing outliers. The proposed method is tested on two datasets acquired by a RIEGL VMX-450 MLS system that contain the major point cloud scenes with different types of road boundaries. The experimental results demonstrate that the proposed method provides a promising solution for extracting contours efficiently and completely. Results show that the precision values are 1.5 times higher and approximately equal than the other two existing methods when the recall value is 0 for both tested two road datasets.

Zitieren

Zitierform:

Sha, Z. / Chen, Y. / Li, W. / et al: A BOUNDARY-ENHANCED SUPERVOXEL METHOD FOR EXTRACTION OF ROAD EDGES IN MLS POINT CLOUDS. 2020. Copernicus Publications.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Rechte

Rechteinhaber: Z. Sha et al.

Nutzung und Vervielfältigung:

Export