UAV MISSION PLANNING FOR AUTOMATIC EXPLORATION AND SEMANTIC MAPPING

Dehbi, Y.; Klingbeil, L.; Plümer, L.

Unmanned Aerial Vehicles (UAVs) are used for the inspection of areas which are otherwise difficult to access. Autonomous monitoring and navigation requires a background knowledge on the surroundings of the vehicle. Most mission planing systems assume collision-free pre-defined paths and do not tolerate a GPS signal outage. Our approach makes weaker assumptions. This paper introduces a mission planing platform allowing for the integration of environmental prior knowledge such as 3D building and terrain models. This prior knowledge is integrated to pre-compute an octomap for collision detection. The semantically rich building models are used to specify semantic user queries such as roof or facade inspection. A reasoning process paves the way for semantic mission planing of hidden and a-priori unknown objects. Subsequent scene interpretation is performed by an incremental parsing process.

Zitieren

Zitierform:

Dehbi, Y. / Klingbeil, L. / Plümer, L.: UAV MISSION PLANNING FOR AUTOMATIC EXPLORATION AND SEMANTIC MAPPING. 2020. Copernicus Publications.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Rechte

Rechteinhaber: Y. Dehbi et al.

Nutzung und Vervielfältigung:

Export