AUTOMATED SEMANTIC MODELLING OF BUILDING INTERIORS FROM IMAGES AND DERIVED POINT CLOUDS BASED ON DEEP LEARNING METHODS

Gülch, E.; Obrock, L.

In this paper, we present an improved approach of enriching photogrammetric point clouds with semantic information extracted from images to enable a later automation of BIM modelling. Based on the DeepLabv3+ architecture, we use Semantic Segmentation of images to extract building components and objects of interiors. During the photogrammetric reconstruction, we project the segmented categories into the point cloud. Any interpolations that occur during this process are corrected automatically and we achieve a mIoU of 51.9 % in the classified point cloud. Based on the semantic information, we align the point cloud, correct the scale and extract further information. Our investigation confirms that utilizing photogrammetry and Deep Learning to generate a semantically enriched point cloud of interiors achieves good results. The combined extraction of geometric and semantic information yields a high potential for automated BIM model reconstruction.

Zitieren

Zitierform:

Gülch, E. / Obrock, L.: AUTOMATED SEMANTIC MODELLING OF BUILDING INTERIORS FROM IMAGES AND DERIVED POINT CLOUDS BASED ON DEEP LEARNING METHODS. 2020. Copernicus Publications.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Rechte

Rechteinhaber: E. Gülch

Nutzung und Vervielfältigung:

Export