A SEQUENCE-TO-SEQUENCE TEMPORAL CONVOLUTIONAL NEURAL NETWORK FOR IONOSPHERE PREDICTION USING GNSS OBSERVATIONS

Kaselimi, M.; Doulamis, N.; Doulamis, A.; Delikaraoglou, D.

This paper proposes a model suitable for predicting the ionosphere delay at different locations of receiver stations using a temporal 1D convolutional neural network (CNN) model. CNN model can optimally addresses non-linearity and model complex data through the creation of powerful representations at hierarchical levels of abstraction. To be able to predict ionosphere values for each visible satellite at a given station, sequence-to-sequence (seq2seq) models are introduced. These models are commonly used for solving sequential problems. In seq2seq models, a sequential input is entered to the model and the output has also a sequential form. Adopting this structure help us to predict ionosphere values for all satellites in view at every epoch. As experimental data, we used global navigation satellite system (GNSS) observations from selected sites in central Europe, of the global international GNSS network (IGS). The data used are part of the multi GNSS experiment (MGEX) project, that provides observations from multiple navigation satellite systems. After processing with precise point positioning (PPP) technique as implemented with GAMP software, the slant total electron content data (STEC) were obtained. The proposed CNN uses as input the ionosphere pierce points (IPP) points coordinates per visible satellite. Then, based on outcomes of the ionosphere parameters, the temporal CNN is deployed to predict future TEC variations.

Zitieren

Zitierform:

Kaselimi, M. / Doulamis, N. / Doulamis, A. / et al: A SEQUENCE-TO-SEQUENCE TEMPORAL CONVOLUTIONAL NEURAL NETWORK FOR IONOSPHERE PREDICTION USING GNSS OBSERVATIONS. 2020. Copernicus Publications.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Rechte

Rechteinhaber: M. Kaselimi et al.

Nutzung und Vervielfältigung:

Export