A NEW CLOUD-EDGE-TERMINAL RESOURCES COLLABORATIVE SCHEDULING FRAMEWORK FOR MULTI-LEVEL VISUALIZATION TASKS OF LARGE-SCALE SPATIO-TEMPORAL DATA

Li, X. M.; Wang, W. X.; Tang, S. J.; Xia, J. Z.; Zhao, Z. G.; Li, Y.; Zheng, Y.; Guo, R. Z.

To address the multi-modal spatio-temporal data efficient scheduling problem of the diverse and highly concurrent visualization applications in cloud-edge-terminal environment, this paper systematically studies the cloud-edge-terminal integrated scheduling model of multi-level visualization tasks of multi-modal spatio-temporal data. By accurately defining the hierarchical semantic mapping relationship between the diverse visual application requirements of different terminals and scheduling tasks, we propose a multi-level task-driven cloud-edge-terminal multi-granularity storage-computing-rendering resource collaborative scheduling method. Based on the workflow, the flexible allocation strategy of cloud-edge-terminal scheduling service chain that consider the characteristics of spatio-temporal task is constructed. Finally, we established a cloud-edge-terminal scheduling adaptive optimization mechanism based on the service quality evaluation model, and developed a prototype system. Experiments are conducted with the urban construction and construction management, the results show that the new method breaks through the bottleneck of traditional spatio-temporal data visualization scheduling, and it can provide theoretical and methodological support for the visualization and scheduling of spatio-temporal big data.

Zitieren

Zitierform:

Li, X. M. / Wang, W. X. / Tang, S. J. / et al: A NEW CLOUD-EDGE-TERMINAL RESOURCES COLLABORATIVE SCHEDULING FRAMEWORK FOR MULTI-LEVEL VISUALIZATION TASKS OF LARGE-SCALE SPATIO-TEMPORAL DATA. 2020. Copernicus Publications.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Rechte

Rechteinhaber: X. M. Li et al.

Nutzung und Vervielfältigung:

Export