A 3D MAP AIDED DEEP LEARNING BASED INDOOR LOCALIZATION SYSTEM FOR SMART DEVICES

Yang, Y.; Toth, C.; Brzezinska, D.

Indoor positioning technologies represent a fast developing field of research due to the rapidly increasing need for indoor location-based services (ILBS); in particular, for applications using personal smart devices. Recently, progress in indoor mapping, including 3D modeling and semantic labeling started to offer benefits to indoor positioning algorithms; mainly, in terms of accuracy. This work presents a method for efficient and robust indoor localization, allowing to support applications in large-scale environments. To achieve high performance, the proposed concept integrates two main indoor localization techniques: Wi-Fi fingerprinting and deep learning-based visual localization using 3D map. The robustness and efficiency of technique is demonstrated with real-world experiences.

Zitieren

Zitierform:

Yang, Y. / Toth, C. / Brzezinska, D.: A 3D MAP AIDED DEEP LEARNING BASED INDOOR LOCALIZATION SYSTEM FOR SMART DEVICES. 2020. Copernicus Publications.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Rechte

Rechteinhaber: Y. Yang et al.

Nutzung und Vervielfältigung:

Export