Nuclear spin noise tomography in three dimensions with iterative simultaneous algebraic reconstruction technique (SART) processing

Ginthör, Stephan J.; Schlagnitweit, Judith; Bechmann, Matthias; Müller, Norbert

We report three-dimensional spin noise imaging (SNI) of nuclear spin density from spin noise data acquired by Faraday detection. Our approach substantially extends and improves the two-dimensional SNI method for excitation-less magnetic resonance tomography reported earlier (Müller and Jerschow, 2006). This proof of principle was achieved by taking advantage of the particular continuous nature of spin noise acquired in the presence of constant magnitude magnetic field gradients and recent advances in nuclear spin noise spectroscopy acquisition as well as novel processing techniques. In this type of projection–reconstruction-based spin noise imaging the trade-off between signal-to-noise ratio (or image contrast) and resolution can be adjusted a posteriori during processing of the original time-domain data by iterative image reconstruction in a unique way not possible in conventional rf-pulse-dependent magnetic resonance imaging (MRI). The 3D SNI is demonstrated as a proof of concept on a commercial 700 MHz high-resolution NMR spectrometer, using a 3D-printed polymeric phantom immersed in water.

Zitieren

Zitierform:

Ginthör, Stephan J. / Schlagnitweit, Judith / Bechmann, Matthias / et al: Nuclear spin noise tomography in three dimensions with iterative simultaneous algebraic reconstruction technique (SART) processing. 2020. Copernicus Publications.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Rechte

Rechteinhaber: Stephan J. Ginthör et al.

Nutzung und Vervielfältigung:

Export