A REGRESSION MODEL OF SPATIAL ACCURACY PREDICTION FOR OPENSTREETMAP BUILDINGS

Maidaneh Abdi, I.; Le Guilcher, A.; Olteanu-Raimond, A-M.

Data quality assessment of OpenStreetMap (OSM) data can be carried out by comparing them with a reference spatial data (e.g authoritative data). However, in case of a lack of reference data, the spatial accuracy is unknown. The aim of this work is therefore to propose a framework to infer relative spatial accuracy of OSM data by using machine learning methods. Our approach is based on the hypothesis that there is a relationship between extrinsic and intrinsic quality measures. Thus, starting from a multi-criteria data matching, the process seeks to establish a statistical relationship between measures of extrinsic quality of OSM (i.e. obtained by comparison with reference spatial data) and the measures of intrinsic quality of OSM (i.e. OSM features themselves) in order to estimate extrinsic quality on an unevaluated OSM dataset. The approach was applied on OSM buildings. On our dataset, the resulting regression model predicts the values on the extrinsic quality indicators with 30% less variance than an uninformed predictor.

Zitieren

Zitierform:

Maidaneh Abdi, I. / Le Guilcher, A. / Olteanu-Raimond, A-M.: A REGRESSION MODEL OF SPATIAL ACCURACY PREDICTION FOR OPENSTREETMAP BUILDINGS. 2020. Copernicus Publications.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Rechte

Rechteinhaber: I. Maidaneh Abdi et al.

Nutzung und Vervielfältigung:

Export