Variability of the terrestrial water cycle, i.e. precipitation (inline-formulaP), evapotranspiration (inline-formulaE), runoff (inline-formulaQ) and water storage change (inline-formulaΔS) is the key to understanding hydro-climate extremes. However, a comprehensive global assessment for the partitioning of variability in inline-formulaP between inline-formulaE, inline-formulaQ and inline-formulaΔS is still not available. In this study, we use the recently released global monthly hydrologic reanalysis product known as the Climate Data Record (CDR) to conduct an initial investigation of the inter-annual variability of the global terrestrial water cycle. We first examine global patterns in partitioning the long-term mean inline-formula
10pt13ptsvg-formulamathimgf6f023cd5b241bbdf3ecfc5ed08485d1
hess-24-381-2020-ie00001.svg10pt13pthess-24-381-2020-ie00001.png
between the various sinks inline-formula
11pt13ptsvg-formulamathimg331d8fbcffe0b139132d971941c0e763
hess-24-381-2020-ie00002.svg11pt13pthess-24-381-2020-ie00002.png
, inline-formula
10pt13ptsvg-formulamathimg4918d218751c71845f1ca4aa1e7d3d55
hess-24-381-2020-ie00003.svg10pt13pthess-24-381-2020-ie00003.png
and inline-formula
18pt13ptsvg-formulamathimga33393a391972ab4550bcd71dc1c990d
hess-24-381-2020-ie00004.svg18pt13pthess-24-381-2020-ie00004.png
and confirm the well-known patterns with inline-formula
10pt13ptsvg-formulamathimgc7d179fe03ddf529f7bec0b29c0df224
hess-24-381-2020-ie00005.svg10pt13pthess-24-381-2020-ie00005.png
partitioned between inline-formula
11pt13ptsvg-formulamathimgbc06230a9cffa9748349c8023b1daa2e
hess-24-381-2020-ie00006.svg11pt13pthess-24-381-2020-ie00006.png
and inline-formula
10pt13ptsvg-formulamathimg27f0f0853d5542b99e46e5a4f8cce313
hess-24-381-2020-ie00007.svg10pt13pthess-24-381-2020-ie00007.png
according to the aridity index. In a new analysis based on the concept of variability source and sinks we then examine how variability in the precipitation inline-formula
14pt16ptsvg-formulamathimg1e5d48b31fd4bbb942e5463f1529a515
hess-24-381-2020-ie00008.svg14pt16pthess-24-381-2020-ie00008.png
(the source) is partitioned between the three variability sinks inline-formula
14pt16ptsvg-formulamathimg1a60437b60b38be1d8e0bb6dbcace6d0
hess-24-381-2020-ie00009.svg14pt16pthess-24-381-2020-ie00009.png
, inline-formula
15pt16ptsvg-formulamathimg978bbacbab20fe43d346ef1d3e408dcf
hess-24-381-2020-ie00010.svg15pt16pthess-24-381-2020-ie00010.png
and inline-formula
20pt17ptsvg-formulamathimgd00d5b0f5d50c5b70e331182e01b5a79
hess-24-381-2020-ie00011.svg20pt17pthess-24-381-2020-ie00011.png
along with the three relevant covariance terms, and how that partitioning varies with the aridity index. We find that the partitioning of inter-annual variability does not simply follow the mean state partitioning. Instead we find that inline-formula
14pt16ptsvg-formulamathimg99bb7f33cad33af7250d71cd254fe8de
hess-24-381-2020-ie00012.svg14pt16pthess-24-381-2020-ie00012.png
is mostly partitioned between inline-formula
15pt16ptsvg-formulamathimg03d9fdd8093ff790d7ef71b46b7f1685
hess-24-381-2020-ie00013.svg15pt16pthess-24-381-2020-ie00013.png
, inline-formula
20pt17ptsvg-formulamathimgc61c41f5708c1232b01cada7d3bb420f
hess-24-381-2020-ie00014.svg20pt17pthess-24-381-2020-ie00014.png
and the associated covariances with limited partitioning to inline-formula
14pt16ptsvg-formulamathimg7ac380857947f19b7f4dc66abc398609
hess-24-381-2020-ie00015.svg14pt16pthess-24-381-2020-ie00015.png
. We also find that the magnitude of the covariance components can be large and often negative, indicating that variability in the sinks (e.g. inline-formula
15pt16ptsvg-formulamathimgd819bef56ee3d3557b8881f296219e23
hess-24-381-2020-ie00016.svg15pt16pthess-24-381-2020-ie00016.png
, inline-formula
20pt17ptsvg-formulamathimg0c6a4157788b1a38bea00d851d7fbb29
hess-24-381-2020-ie00017.svg20pt17pthess-24-381-2020-ie00017.png
) can, and regularly does, exceed variability in the source (inline-formula
14pt16ptsvg-formulamathimgd1820149285385cb51925828a91f3ec0
hess-24-381-2020-ie00018.svg14pt16pthess-24-381-2020-ie00018.png
). Further investigations under extreme conditions revealed that in extremely dry environments the variance partitioning is closely related to the water storage capacity. With limited storage capacity the partitioning of inline-formula
14pt16ptsvg-formulamathimg92dc58ed2fa2a477c16ab8a4c62782ce
hess-24-381-2020-ie00019.svg14pt16pthess-24-381-2020-ie00019.png
is mostly to inline-formula
14pt16ptsvg-formulamathimgc7effbfe6087e331f78bb0c13add15a4
hess-24-381-2020-ie00020.svg14pt16pthess-24-381-2020-ie00020.png
, but as the storage capacity increases the partitioning of inline-formula
14pt16ptsvg-formulamathimg0ccf32c10b9d484c453f85fe5c8242b3
hess-24-381-2020-ie00021.svg14pt16pthess-24-381-2020-ie00021.png
is increasingly shared between inline-formula
14pt16ptsvg-formulamathimg1449aefc2ef8562acbc5bfe36a25bcc8
hess-24-381-2020-ie00022.svg14pt16pthess-24-381-2020-ie00022.png
, inline-formula
20pt17ptsvg-formulamathimgd85a0a46bf735ef5d2b369c0f83bbd78
hess-24-381-2020-ie00023.svg20pt17pthess-24-381-2020-ie00023.png
and the covariance between those variables. In other environments (i.e. extremely wet and semi-arid–semi-humid) the variance partitioning proved to be extremely complex and a synthesis has not been developed. We anticipate that a major scientific effort will be needed to develop a synthesis of hydrologic variability.