Oxidation of SO 2 by stabilized Criegee intermediate (sCI) radicals as a crucial source for atmospheric sulfuric acid concentrations

Boy, M.; Mogensen, D.; Smolander, S.; Zhou, L.; Nieminen, T.; Paasonen, P.; Plass-Dülmer, C.; Sipilä, M.; Petäjä, T.; Mauldin, L.; Berresheim, H.; Kulmala, M.

The effect of increased reaction rates of stabilized Criegee intermediates (sCIs) with SO 2 to produce sulfuric acid is investigated using data from two different locations, SMEAR II, Hyytiälä, Finland, and Hohenpeissenberg, Germany. Results from MALTE, a zero-dimensional model, show that using previous values for the rate coefficients of sCI + SO 2, the model underestimates gas phase H 2SO 4 by up to a factor of two when compared to measurements. Using the rate coefficients recently calculated by Mauldin et al. (2012) increases sulfuric acid by 30–40%. Increasing the rate coefficient for formaldehyde oxide (CH 2OO) with SO 2 according to the values recommended by Welz et al. (2012) increases the H 2SO 4 yield by 3–6%. Taken together, these increases lead to the conclusion that, depending on their concentrations, the reaction of stabilized Criegee intermediates with SO 2 could contribute as much as 33–46% to atmospheric sulfuric acid gas phase concentrations at ground level. Using the SMEAR II data, results from SOSA, a one-dimensional model, show that the contribution from sCI reactions to sulfuric acid production is most important in the canopy, where the concentrations of organic compounds are the highest, but can have significant effects on sulfuric acid concentrations up to 100 m. The recent findings that the reaction of sCI + SO 2 is much faster than previously thought together with these results show that the inclusion of this new oxidation mechanism could be crucial in regional as well as global models.



Boy, M. / Mogensen, D. / Smolander, S. / et al: Oxidation of SO2 by stabilized Criegee intermediate (sCI) radicals as a crucial source for atmospheric sulfuric acid concentrations. 2013. Copernicus Publications.


12 Monate:

Grafik öffnen


Rechteinhaber: M. Boy et al.

Nutzung und Vervielfältigung: