New representation of water activity based on a single solute specific constant to parameterize the hygroscopic growth of aerosols in atmospheric models

Metzger, S.; Steil, B.; Xu, L.; Penner, J. E.; Lelieveld, J.

Water activity is a key factor in aerosol thermodynamics and hygroscopic growth. We introduce a new representation of water activity ( aw), which is empirically related to the solute molality (μ s) through a single solute specific constant, ν i. Our approach is widely applicable, considers the Kelvin effect and covers ideal solutions at high relative humidity (RH), including cloud condensation nuclei (CCN) activation. It also encompasses concentrated solutions with high ionic strength at low RH such as the relative humidity of deliquescence (RHD). The constant ν i can thus be used to parameterize the aerosol hygroscopic growth over a wide range of particle sizes, from nanometer nucleation mode to micrometer coarse mode particles. In contrast to other aw-representations, our ν i factor corrects the solute molality both linearly and in exponent form x · ax. We present four representations of our basic aw-parameterization at different levels of complexity for different aw-ranges, e.g. up to 0.95, 0.98 or 1. ν i is constant over the selected aw-range, and in its most comprehensive form, the parameterization describes the entire aw range (0–1). In this work we focus on single solute solutions. ν i can be pre-determined with a root-finding method from our water activity representation using an aw−μ s data pair, e.g. at solute saturation using RHD and solubility measurements. Our aw and supersaturation (Köhler-theory) results compare well with the thermodynamic reference model E-AIM for the key compounds NaCl and (NH 4) 2SO 4 relevant for CCN modeling and calibration studies. Envisaged applications include regional and global atmospheric chemistry and climate modeling.

Zitieren

Zitierform:

Metzger, S. / Steil, B. / Xu, L. / et al: New representation of water activity based on a single solute specific constant to parameterize the hygroscopic growth of aerosols in atmospheric models. 2012. Copernicus Publications.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Rechte

Rechteinhaber: S. Metzger et al.

Nutzung und Vervielfältigung:

Export