EXPLORING THE POTENTIAL OF FULL WAVEFORM AIRBORNE LIDAR FEATURES AND ITS FUSION WITH RGB IMAGE IN CLASSIFICATION OF A SPARSELY FORESTED AREA

Babadi, M.; Sattari, M.; Iran Pour, S.

Precise measurements of forest trees is very important in environmental protection. Measuring trees parameters by use of ground- based inventories is time and cost consuming. Employing advanced remote sensing techniques to obtain forest parameters has recently made a great progress step in this research area. Among the information resources of the study field, full waveform LiDAR data have attracted the attention of researchers in the recent years. However, decomposing LiDAR waveforms is one of the challenges in the data processing. In fact, the procedure of waveform decomposition causes some of the useful information in waveforms to be lost. In this study, we aim to investigate the potential use of non-decomposed full waveform LiDAR features and its fusion with optical images in classification of a sparsely forested area. We consider three classes including i) ground, ii) Quercus wislizeni and iii) Quercus douglusii for the classification procedure. In order to compare the results, five different strategies, namely i) RGB image, ii) common LiDAR features, iii) fusion of RGB image and common LiDAR features, iv) LiDAR waveform structural features and v) fusion of RGB image and LiDAR waveform structural features have been utilized for classifying the study area. The results of our study show that classification via using fusion of LiDAR waveform features and RGB image leads to the highest classification accuracy.

Zitieren

Zitierform:

Babadi, M. / Sattari, M. / Iran Pour, S.: EXPLORING THE POTENTIAL OF FULL WAVEFORM AIRBORNE LIDAR FEATURES AND ITS FUSION WITH RGB IMAGE IN CLASSIFICATION OF A SPARSELY FORESTED AREA. 2019. Copernicus Publications.

Rechte

Rechteinhaber: M. Babadi et al.

Nutzung und Vervielfältigung:

Export