ESTIMATION OF SOIL MOISTURE AND EARTH’S SURFACE TEMPERATURE USING LANDSAT-8 SATELLITE DATA

Entezari, M.; Esmaeily, A.; Niazmardi, S.

Soil moisture estimation is essential for optimal water and soil resources management. Surface soil moisture is an important variable in the natural water cycle, which plays an important role in the global equilibrium of water and energy due to its impact on hydrological, ecological and meteorological processes. Soil moisture changes due to the variability of soil characteristics, topography and vegetation in time and place. Soil moisture measurements are performed directly using in situ methods and indirect, by means of transfer functions or remote sensing. Since in-site measurements are usually costly and time-consuming in large areas, we can use methods such as remote sensing to estimate soil moisture at very large scales. The purpose of this study is to estimate soil moisture using surface temperature and vegetation indices for large areas. In this paper, ground temperature was calculated using Landsat-8 thermal band for Mashhad city and was used to estimate the soil moisture content of the study area. The results showed that urban areas had the highest temperature and less humidity at the time of imaging. For this purpose, using the LANDSAT 8 images, the indices were extracted and validated with soil moisture data. In this research, the study area was described and then, using the extracted indices, the estimated model was obtained. The results showed that there is a good correlation between surface soil moisture content with LST and NDVI indices (95%). The results of the verification of the soil moisture estimation model also showed that this model with a mean error of less than 0.001 can predict the surface moisture content, this small amount of error indicates the precision of the proposed model for estimating surface moisture.

Zitieren

Zitierform:

Entezari, M. / Esmaeily, A. / Niazmardi, S.: ESTIMATION OF SOIL MOISTURE AND EARTH’S SURFACE TEMPERATURE USING LANDSAT-8 SATELLITE DATA. 2019. Copernicus Publications.

Rechte

Rechteinhaber: M. Entezari et al.

Nutzung und Vervielfältigung:

Export