SAETTA: high-resolution 3-D mapping of the total lightning activity in the Mediterranean Basin over Corsica, with a focus on a mesoscale convective system event

Coquillat, Sylvain; Defer, Eric; de Guibert, Pierre; Lambert, Dominique; Pinty, Jean-Pierre; Pont, Véronique; Prieur, Serge; Thomas, Ronald J.; Krehbiel, Paul R.; Rison, William

Deployed on the mountainous island of Corsica for thunderstorm monitoring purposes in the Mediterranean Basin, SAETTA is a network of 12 LMA (Lightning Mapping Array, designed by New Mexico Tech, USA) stations that allows the 3-D mapping of very high-frequency (VHF) radiation emitted by cloud discharges in the 60–66 MHz band. It works at high temporal (∼40 ns in each 80 µs time window) and spatial (tens of meters at best) resolution within a range of about 350 km. Originally deployed in May 2014, SAETTA was commissioned during the summer and autumn seasons and has now been permanently operational since April 2016 until at least the end of 2020. We first evaluate the performances of SAETTA through the radial, azimuthal, and altitude errors of VHF source localization with the theoretical model of Thomas et al. (2004). We also compute on a 240 km × 240 km domain the minimum altitude at which a VHF source can be detected by at least six stations by taking into account the masking effect of the relief. We then report the 3-year observations on the same domain in terms of number of lightning days per square kilometer (i.e., total number of days during which lightning has been detected in a given 1 km square pixel) and in terms of lightning days integrated across the domain. The lightning activity is first maximum in June because of daytime convection driven by solar energy input, but concentrates on a specific hot spot in July just above the intersection of the three main valleys. This hot spot is probably due to the low-level convergence of moist air fluxes from sea breezes channeled by the three valleys. Lightning activity increases again in September due to numerous small thunderstorms above the sea and to some high-precipitation events. Finally we report lightning observations of unusual high-altitude discharges associated with the mesoscale convective system of 8 June 2015. Most of them are small discharges on top of an intense convective core during convective surges. They are considered in the flash classification of Thomas et al. (2003) to be small–isolated and short–isolated flashes. The other high-altitude discharges, much less numerous, are long-range flashes that develop through the stratiform region and suddenly undergo upward propagations towards an uppermost thin layer of charge. This latter observation is apparently consistent with the recent conceptual model of Dye and Bansemer (2019) that explains such an upper-level layer of charge in the stratiform region by the development of a non-riming ice collisional charging in a mesoscale updraft.

Zitieren

Zitierform:

Coquillat, Sylvain / Defer, Eric / de Guibert, Pierre / et al: SAETTA: high-resolution 3-D mapping of the total lightning activity in the Mediterranean Basin over Corsica, with a focus on a mesoscale convective system event. 2019. Copernicus Publications.

Rechte

Rechteinhaber: Sylvain Coquillat et al.

Nutzung und Vervielfältigung:

Export